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1 はじめに
　ベクトル・行列・行列式という概念は、単に数値の組として扱うよりも、下記のように空間的な点や線と
その操作として解釈した方が直観的イメージをもって扱える。

ベクトル・行列・行列式の意味� �
ベクトル 　矢印、または空間内の点であり、下記ベクトル xは、n次元空間の 1つの点、または原点か

らの矢印を表す。

x =


x1

x2

...
xn


行列 　空間から空間への写像であり、下記行列 A の場合は、n 次元空間から m 次元空間への写像を

表す。

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
...

...
am1 am2 · · · amn


行列式 　上記の行列で写像した時の面積拡大率であり、|A|と表す。� �
ベクトルが空間内の点、または矢印として解釈できるのは明らかだと思う。行列についても、下式のよう
に具体的な計算方法をみれば、A(m × n) が n 次元ベクトル x を m 次元ベクトル y に写像する。つまり、
A(m× n)が、ベクトル空間 Vn のからベクトル空間 Vm への写像を意味している事が判る。この写像を線形
写像と呼ぶ。マトリクス A(m × n)による線形写像を ϕとすると、このマトリクス A(m × n)は線形写像 ϕ

のひとつの表現であると考えられる。
a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
...

...
am1 am2 · · · amn




x1

x2

...
xn

 =


y1
y2
...
ym


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2 ベクトル空間と線形写像
一般に、ベクトル xを以下のように表し、原点からの矢印、または空間内の点を表すものと考える事がで
きる。

x =


x1

x2

...
xn


ここでは「矢印としてのベクトル」の概念を拡張し、ベクトル空間という言葉を定義する。そのように実体を
離れて性質を抽象化する事で適用できる範囲が広がる。*1

2.1 ベクトル概念の拡張
ベクトル空間とは、以下の規則１と２のような「和」と「スカラー積」の演算が定義できるものの集合であ
る。逆に言えば、こうした演算が定義できれば、矢印でなくてもベクトル空間とみなす事ができる。例えば、
あとで述べるように関数をベクトルとする事で、関数空間が導入される。

そしてベクトル空間が定義ができれば、空間の次元（空間の独立な方向の数）などの特徴を調べたり、ノル
ムや内積などのように数学的に「近さ」を定量化したり、さらに空間を様々に変換し単純化したりする操作が
可能になる。

定義 2.1. ベクトル空間の定義　

1　和 　ベクトル空間 V の任意の２つのベクトルの和が定義でき、その結果がまたベクトル空間 V の要
素である。つまり

x,y ∈ V ならば x+ y ∈ V

2　スカラー積 　任意のスカラー cとベクトル空間 V の任意のベクトル xについて積 cxが定義でき、そ
の結果がまたベクトル空間 V の要素である。つまり

c ∈ R, x ∈ V ならば cx ∈ V

簡単に表現すると、ベクトル空間 V の任意の元 x、 yに関して和（x+ y ∈ V）と積（cx ∈ V )について閉
じている集合の事である。正確には以下の８つの公理系を満たす集合 V の事である。

*1 3Blue1Brownの動画を東京大学の学生有志団体が翻訳・再編集し公式ライセンスのもと公開している以下の資料がわかりやすい。
•『抽象ベクトル空間』https://www.youtube.com/watch?v=FhIXzQdIwRI

•『3Blue1BrownJapan』https://www.youtube.com/@3Blue1BrownJapan
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公理 2.1. ベクトル空間の公理　
集合 V の要素（元）に対して「加法」が定義され以下の性質を持つ。

1　交換法則 x+ y = y + x

2　結合法則 (x+ y) + z = y + (x+ z)

3　単位元の存在 　任意のベクトル xに対して、x+ 0 = xとなる零ベクトル 0が存在する。
4　逆元の存在 　任意のベクトル xに対して、−xというベクトルが存在し、　 x+ (−x) = 0

さらに「スカラー乗法」と言われる演算が定義され以下の性質を持つ。

5　結合法則 　２つのスカラー c, dに対して、　 (cd)x = c(dx)

6　スカラーに関する分配法則 　 c(x+ y) = cx+ cy

7　ベクトルに関する分配法則 　 (c+ d)x = cx+ dx

8　単位元の存在 　任意のベクトル xに対して、1 · x = xとなる単位元 1が存在する

ベクトルを矢印として捉えた場合、これらの公理が成り立つことは図 1のように明らかである。

交換法則 結合法則

図 1 ベクトルの演算

■n次の多項式の集合もベクトル空間である 　このように和とスカラー積について閉じている集合としてを
ベクトル空間を定義すると、多項式全体がなす空間もベクトル空間として扱える。例えば、以下のように２次
の多項式全体がつくる集合 P を考える。

P = {ax2 + bx+ c | a, b, c ∈ R}

図 2のように、２次多項式の a, b, cという３つの係数を縦に並べた３次元の縦ベクトルを考えると、多項式
の演算規則を考えれば判るように、ベクトルどうしの和がまた多項式の集合 P の要素になっている。また、
スカラー積も同じく多項式の集合 P の要素で和とスカラー積について閉じた演算を定義する事が可能である。
このような演算を定義する事によって n次の多項式の係数をベクトル空間として扱う事が可能になる。

■実数値関数の集合 つぎに、関数を要素とする集合をベクトル空間として扱える事を示そう。
閉区間 [a, b]で定義された実数値連続関数全体からなる集合を C[a, b]で表す事にする。この集合 C[a, b]に
ついて、加法とスカラー倍を定義しよう。
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



a1

b1

c1



 +





a2

b2

c2



 =





a1 + a2

b1 + b2

c1 + c2





a1 x
2 + b1 x + c1

a2 x
2 + b2 x + c2

(a1 + a2)x
2 + (b1 + b2)x + (c1 + c2)

+

( ax
2 + bx + c )

ax
2 + bx + c





a

b

c



 =





a

b

c





=

図 2 多項式の演算規則のベクトル表現

まず加法を以下のように関数 f(x)と g(x)の値の和であるとする。そして、これを関数 (f + g)(x)と表記
する。

(f + g)(x) := f(x) + g(x)

また、スカラー (k)倍を以下のように関数 f(x)の値を k 倍するものとし、関数 (kf)(x)と表記する。

(kf)(x) := kf(x)

当然、関数と関数の和 (f + g)(x)も、関数の定数倍したも (kf)(x)も、変数 xの関数になっており実数値連
続関数となる。こうする事で、実数値連続関数全体からなる集合 C[a, b]はベクトル空間になる。このような
関数からなるベクトル空間は「関数空間」と呼ばれる。
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2.2 ベクトルの座標値を基底で表す
あるベクトル vを表すのに、図 3のように、基準となるベクトル e⃗1 と e⃗2 を決めて、その倍数で表す事が出
来る。

この時、基準となる１組のベクトル (e⃗1, e⃗2)を基底、それぞれのベクトルに対して何倍したかという実数の
組 (3, 2)t を座標と呼ぶ。

~v

~e1

~e2

図 3 基準となるベクトルを決めてその倍数で表す

ベクトルの組 (e⃗1, e⃗2, · · · , e⃗n)が基底であるためには、どんなベクトル v⃗ でも

v⃗ = x1e⃗1 + x2e⃗2 + · · ·+ xne⃗n

という形で表すことが出来、しかもその表し方は１通りだけである事が必要である。このように与えられたベ
クトル e⃗1, e⃗2, · · · , e⃗n に対して、スカラー数 x1, x2, · · · , xn をもってきて、x1e⃗1 + x2e⃗2 + · · · + xne⃗n と表す
事を線形結合と呼ぶ。つまり、

任意のベクトル v⃗が、e⃗1, e⃗2, · · · , e⃗n の線形結合でを表す事ができ、しかもその表し方が唯一であるとき、ベ
クトル (e⃗1, e⃗2, · · · , e⃗n)組を基底と呼ぶ。

2.3 線形独立とは何か
任意のベクトル v⃗ を e⃗1, e⃗2, · · · , e⃗n の線形結合でを表したとき、その表し方が唯一である事をより正確に定
義しよう。このような条件を満たすベクトルの組をお互いに線形独立であるという。

定義 2.2. 線形独立の定義　
あるベクトルの組 {e⃗1, e⃗2, · · · , e⃗n}に対して、以下の条件が成立する時、そのベクトルの組はお互いに線形
独立であるという。

u1e⃗1 + u2e⃗2 + · · ·+ une⃗n = 0⃗ ならば u1 = u2 = · · · = un = 0 (2.1)

この定義が、「任意のベクトル v⃗ を線形結合で表す方法が唯一である」事と同じである事を確認しよう。
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■線形独立なら表し方は唯一である 任意のベクトル v⃗ が、v⃗ = x1e⃗1 + x2e⃗2 + · · ·+ xne⃗n と表すことができ
たとする。その時、ベクトルの組 {e⃗1, e⃗2, · · · , e⃗n}が式 (2.1)を満たすなら、その表し方は唯一である事を確
認しよう。
この証明には背理法を使う。いま仮に同じベクトル v⃗ を、v⃗ = y1e⃗1 + y2e⃗2 + · · ·+ yne⃗n と表す事が出来た
としよう。つまり以下の２式が成り立つ。

v⃗ = x1e⃗1 + x2e⃗2 + · · ·+ xne⃗n

v⃗ = y1e⃗1 + y2e⃗2 + · · ·+ yne⃗n

ここで、この２つの式の引き算をすると。

(x1 − y1)e⃗1 + (x2 − y2)e⃗2 + · · ·+ (xn − yn)e⃗n = 0

ところが、このベクトルの組 {e⃗1, e⃗2, · · · , e⃗n}は線形独立だから、式 (2.1)より、係数はすべてゼロでなけれ
ばならない。したがって、

x1 = y1, x2 = y2, · · · , xn = yn

つまり、表された係数の組は全く同じでなければならない。

■線形従属なら冗長である 一方、線形従属なら、その中の 1つは他のベクトルの線形結合で表す事ができる
事を示そう。いま、ベクトルの組 {e⃗1, e⃗2, · · · , e⃗n}が線形従属である、つまり

u1e⃗1 + u2e⃗2 + · · ·+ une⃗n 6= 0⃗

とすると
e⃗n = −u1

un
e⃗1 −

u2

un
e⃗2 + · · ·+−un−1

un
⃗en−1

というように、特定のベクトルが他のベクトルの線形結合で表す事ができる。
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2.4 次元
　
ゼロ行列・単位行列� �
そのベクトル空間に含まれる基底ベクトルの本数を、その空間の次元と呼ぶ。次元は、その空間に含まれ
る線形独立なベクトルの数である。� �
定義 2.3. 次元の定義　
あるベクトル空間 V に属する１次独立なベクトルの最大個数が nであるとき、nをこのベクトル空間の次
元といい、以下のように表す。

dimV = n

しかし、基底の取り方は色々と可能である。では、どの基底について本数を数えれば良いのか？　実は、ど
のように基底をとっても基底ベクトルの最大数は一定である。例えば、３次元ベクトル全体 R3 の３本の基底
に、さらに基底の候補となりそうなベクトルを１つ加えようとすると、線形独立でなくなる。その事を確認し
てみよう。

■n+ 1個の基底は作れない いま、ベクトル空間 Vn が、n個の基底 {e1, e2, · · · , en}によって生成されてい
るとする。このとき、新たに別の新しい n個の基底 {f1, f2, · · · , fn}をつくり、そこにさらにもう一本の基底
fn+1 を加える事を考えよう。
新しい n個の基底 {f1, f2, · · · , fn}は、全て元の基底 {e1, e2, · · · , en}の一次結合で表す事ができるので、

f1 = a11e1 + a12e2 + · · ·+ a1nen

f2 = a21e1 + a22e2 + · · ·+ a2nen
...

fn = an1e1 + an2e2 + · · ·+ annen

(2.2)

いっぽう逆に、元の基底 {e1, e2, · · · , en}も、新しい n個の基底 {f1, f2, · · · , fn}の一次結合で表す事ができ
るので、 

e1 = b11f1 + b12f2 + · · ·+ b1nfn

e2 = b21f1 + b22f2 + · · ·+ b2nfn
...

en = bn1f1 + bn2f2 + · · ·+ bnnfn

(2.3)

ここで、新しい新しい n個の基底 {f1, f2, · · · , fn}にさらに、もう一本の基底 fn+1 を加えるとする。とうぜ
ん、fn+1 も元の基底 {e1, e2, · · · , en}の一次結合で表す事ができるので、

fn+1 = bn+1·1e1 + bn+1·2e2 + · · ·+ bn+1·nen (2.4)

この式に式 2.3を代入して、すべてを新しい基底 {f1, f2, · · · , fn}であらわすと

fn+1 = α1f1 + α2f2 + · · ·+ αnfn

7



つまり、新しいベクトル fn+1 が n個の基底 {f1, f2, · · · , fn}の一次結合で表される事になる。この式を変形
して

α1f1 + α2f2 + · · ·+ αnfn − fn+1 = 0

とすると、fn+1の係数が−1、つまりゼロでなくても成立する事になり、n+1個の基底 {f1, f2, · · · , fn, fn+1}
は、線形従属になってしまう。
つまり、

n個の基底で成り立っている空間に、もう一本の基底を加えて n+ 1個の基底を作ろうとしても、それらは
線形独立になりえない。つまり基底になり得ないという事である。
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2.5 行列は写像である
ベクトル空間は静的な対象で、この静的な対象に動的な写像という機能を追加することによって様々な状態
の変化を記述できるようになる。この動的機能にあたるのが線形写像で、その線形写像を具体的に表現したの
が行列であるといえる。ここでは、m×n行列がベクトル空間 Vn から Vm への線形写像である事をしめそう。

2.5.1 写像の用語の定義
まずは、写像の概念で使われる幾つかの用語の定義をまとめておく。

■写像・定義域・値域の定義 図 4のように、２つの集合 V とW があり、V の各元に対してW の 1つの元
を対応させる規則 f が与えられているとき、V の各元にW の元がただ一つ対応する場合を V からW への写
像であるという。

写像といえる   　に対応する要素がない
ので写像といえない

  　に対応する要素が２つある
ので写像といえない

図 4 写像の定義（V の各元に対して、対応するW の元がただ一つ存在する）

また、図 5のように、集合 V を定義域、集合W に含まれる部分集合で定義域の各元の写像先を値域とい
う。つまり、この vn が作るW の部分集合を写像 f の像 (Image)といい、Imというように表す。

V W

f

Im f

図 5 写像 f の像 (Image)

■全射・単射・全単射 図 6のように、集合 V の異なる元 v1、v2 を集合W の異なる要素に移す写像を単射と
いう。一方、移される先の集合W の元 wn には全て、移される元の元 vn が存在する場合を全射という。単射
であり全射であるものを全単射または、上への 1対 1対応という。
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V W

v1

v2 f(v2)

f(v1) vn

wn = f(vn)
wn

V W

図 6 写像 f の単射と全射

■逆写像 写像 f : V → W が全単射ならば、W の各要素 wn に対して、f(vn) = wn となる元の集合 V の要
素がただひとつ定まるので、逆に wn を vn に対応させる逆写像 f−1 : W → V が存在する。

定義 2.4. 　正則写像と正則行列
　 V からW への線形写像 f が全単射であり１対１対応する時、f は正則な写像であるといい、その線形
写像 f の表現行列 Aを正則行列と呼ぶ。

10ページに述べたように、写像 f : V → W が正則な写像*2ならば、W の各要素 wnに対して、f(vn) = wn

となる元の集合 V の要素がただひとつ定まるので、逆に wn を vn に対応させる逆写像 f−1 : W → V が存在
する。つまり、f が正則な写像ならば、写像 f の表現行列 Aとし、f−1 の表現行列を A−1 とすると

AA−1 = A−1A = I

が成立する。上式を満たす２つの行列 Aと A−1 は互いに逆行列であるという。詳しい逆行列の性質について
は、30ページを参照。

2.5.2 線形写像の定義

定義 2.5. 線形写像の定義　
一般に、x、yをベクトル、cをスカラーとしたとき、以下の２式が成立する写像 f(x)を線形写像と呼ぶ。

f(x+ y) = f(x) + f(y) (2.5)

f(cx) = cf(x) (2.6)

ベクトル空間の定義 2.1で述べたように、ベクトル空間とは加法とスカラー乗法について閉じた空間であっ
た。それと同様に、線形写像とは加法とスカラー乗法を保持する写像である。つまり、線形写像とは、ベクト
ル空間での線形結合の構造をそのまま保持する写像といえる。
意味を図示すると図 7のようなイメージである。式 (2.5)は、(a)のように「足し算した結果を f で写像し
ても、予め写像 f で別のベクトル空間W に移してから足し算をしても同じである」という事である。また式

*2 正則行列の性質については、33ページを参照
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(2.6)は、(b)のように「スカラー倍した結果を写像 f で別のベクトル空間W に移しても、予め写像 f で別の
ベクトル空間W に移してからスカラー倍しても同じである」という事である。

f (x y )

f(x)

f(y)
+

=

W

+

V

x

+
y

=

x + y

f(x)

=
WV

x

=

cx f(c x)

c c

図 7 線形写像のイメージ

2.5.3 線形写像を行列で表す
図 8 のように n 次元ベクトル x に m × n 行列 A をかけると、m 次元ベクトル y = Ax が得られる。つ
まり、

行列 Aを指定すれば、n次元ベクトル空間 Vn の任意のベクトルを m次元ベクトル空間 Vm の別のベクト
ルに移す写像が定まる。また逆に、任意の線形写像 f は必ず「行列を掛ける」という形式で表現できる。この
ように線形変換 f を表す行列を線形変換の表現行列と呼ぶ。











y1

y2

.

.

.

ym











=











a11 a12 a1n

a21 a22 a2n

.

.

.

.

.

.

.

.

.

.

.

.

am1 am2 amn





















x1

x2

.

.

.

xn










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図 8 行列による写像のイメージ：Rn 空間のベクトル xを Rm 空間のベクトル y に移す

また逆に、以下の定理より任意の線形写像 f が行列で表せるとすると、その行列は必ずひとつになる。
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定理 2.1. ２つのm× n行列 A、B に対して、対応する線形写像をそれぞれ fA、fB とするとき、写像と
して fA = fB ならば、行列としても A = B が成り立つ。

図 8のように、行列の具体的な計算の様子をを見ればこの定理は明らかであるが、簡単に説明する。Rn の
任意のベクトル xに対して、それぞれの写像を fA(x) = Ax、fB(x) = Bxとあらわせたとする。
この二つの写像が同じということは Ax = Bxである。なので、(A− B)x = 0が全ての xについて成立す
る必要があり、A = B であり、ただひとつに定まる。

2.5.4 図形を線形写像で移す
次いで、線形変換によって、図形を写す事を考えてみよう。まずは、点や直線から・・

原点は原点に移る 　 f(0) = 0なので、線形写像によって原点は原点に移る
直線は直線に移る 　直線は直線または点に移る

直線が直線または点に移る事を確認しよう。図 9のように、２つのベクトル a⃗と b⃗を用いて、直線をベクト
ルで表すと

x⃗ = a⃗+ t⃗b

ここで tはスカラーである。この直線を線形変換したとすると、線形演算の線形性（式 (2.5)と式 (2.6)）より
直線式は

f(x⃗) = f (⃗a+ t⃗b)

= f (⃗a) + tf (⃗b)

と表す事ができる。これはまた新しい２つのベクトル f (⃗a)と f (⃗b)とで表す直線式に他ならない。

b

f(a)

f(b)

x = a + tb f(x) = f(a) + tf(b)

a

b

f(b)

図 9 線形変換によって直線は直線に移る

ただし、f(b)がゼロの場合は、f(x) = f(a) + tf(b)は f(b)が消えて点になる。つまり特別な場合は直線が
点に移る事になる*3。

*3 後に詳しく述べるが、特別な場合とは線形写像の次元が低い場合、この場合なら１次元の場合である。
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2.5.5 線形写像で空間全体を変形する
線形写像が点や直線を移すという考え方もできるが、線形写像は空間全体を変形するのであると考える事も
できる。むしろ、その考え方の方が応用性が高い。

線形写像によって変わるのは基底ベクトルであり、座標値は変わらない。つまり、線形写像は、ある点を別
の点に移動すると捉える事もできるが、空間の座標系全体を変形すると考える事もできる。

例えば
A =

(
2 1
1 3

)

という行列 Aは基底ベクトル
(

1

0

)
を
(

2

1

)
に、

(
0

1

)
を
(

1

3

)
に移す。その様子を示したのが図 17

である。
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


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図 10 線形変換による空間の変形の様子

このように行列による線形写像は、基底ベクトルを変換しているのであると考える事ができる。もうすこし
説明してみよう。いま元のベクトルを x = (x1 x2)

t とし、それを基底と座標値で表現すると

x = x1

(
1
0

)
+ x2

(
0
1

)
いっぽう、線形変換後のベクトル Axは

Ax = x1

(
2
1

)
+ x2

(
1
3

)
つまり、変わるのは基底ベクトルであり、座標値は変わらないと考える事ができる。これは、空間自体が変形
していると考える事ができる。
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2.5.6 列ベクトルが張る空間への写像である
行列 Aによる写像は、単に空間を変形するだけではない。先にみたように元々の基底ベクトルを行列 Aの
列ベクトルに変換する事である。なので、行列 Aの列ベクトルの構造を見れば、どのように空間が変形する
かが判る。この事を確認しよう。

ここでは基底ベクトルの変換を簡易にしめすために Aを n× nの正方行列とする事にする。そして xおよ
び y を n次元列ベクトルとする。そうすると写像 y = Axは以下のように表す事ができる。

y1
y2
...
yn

 =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
an1 an2 · · · ann




x1

x2

...
xn


この時、元々のベクトル xは元々の基底ベクトルを用いて

x = x1


1
0
...
0

+ x2


0
1
...
0

+ · · ·+ xn


0
0
...
1


であったと考える事が出来る。それに対して、ベクトル xを行列 Aで変換した後のベクトル y は

y = x1


a11
a21
...

an1

+ x2


a12
a22
...

an2

+ · · ·+ xn


a1n
a2n
...

ann


と表す事ができる。これを空間の変換としてみると

1
0
...
0

⇒


a11
a21
...

an1




0
1
...
0

⇒


a12
a22
...

an2

 · · ·


0
0
...
1

⇒


a1n
a2n
...

ann


というように、元々の基底ベクトルを行列 Aの列ベクトルからなる基底ベクトルで表現している事に他なら
ない。
つまり、図 11のように、行列 Aによる像は、Aの列ベクトルの線形結合で表される集合になっている。
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


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図 11 行列 Aによる像は、Aの列ベクトルの線形結合で表される集合である

2.6 表現行列
ベクトルとは「矢印」の概念の数値化であり、その矢印の集合が「和」と「スカラー積」について閉じてい
るという性質を持っている事から、逆にその性質をもった要素の集合を「ベクトル空間」と呼ぶと定義した。
このように抽象化する事で関数を要素とするベクトル空間という拡張が可能になった。そして、基底と言われ
る基本的なベクトル要素をとる事で、その集合の任意の要素を複数の基底の線形結合として表す事ができる事
を示した。その基底の数こそがそのベクトル空間に固有の特徴である「次元」と呼ばれる数となる。
さらにこのベクトル空間からベクトル空間への写像という機能を考えた。これが線形写像で、その線形写像
を具体的に表現したのが表現行列である。この考え方によって統一的な分析が可能になり、例えば「微分す
る」という行為を「線形写像」とみなす事ができ、それを行列で表現できるようになる。つまり微分作用を行
列演算に変える事が可能である*4。

■多項式の微分
節 2.1 において、n 次多項式の集合がベクトル空間である事を示した。任意の n 次多項式を微分すると

(n− 1)次多項式になる。そのように n次多項式の微分は n次元ベクトル空間 Γn から (n− 1)次元ベクトル
空間 Γn−1 への線形写像になる。その事を示そう。

まず、n次元多項式全体のベクトル空間を Γn、n− 1次元多項式全体のベクトル空間を Γn−1 とする。

　Γn = {Pn(x) | Pn(x) = p0 + p1x+ p2x
2 + · · ·+ pnx

n, pi ∈ K}
　　Γn−1 = {Pn−1(x) | Pn−1(x) = p0 + p1x+ p2x

2 + · · ·+ pn−1x
n−1, pi ∈ K}

この時、以下のように Γn の元である Pn(x)の微分は、Γn−1 の元である Pn−1(x)に写される事になり、ベ

*4 ここで述べる計算方法は、以下の YouTubeでの講義を参考にした。
• ようつべ先生の数学教室 『表現行列とは』https://www.youtube.com/watch?v=45kRiNwIXGo

• ようつべ先生の数学教室 『表現行列の座標変換』https://www.youtube.com/watch?v=SHTewZxeIV0
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クトル空間 Γn からベクトル空間 Γn−1 への写像である事は確かである。
d

dx
Pn(x) =

d

dx
{p0 + p1x+ p2x

2 + · · · pnxn}

= p1 + 2p2x+ · · ·+ npnx
n−1

= Pn−1(x)

この写像が線形である事を示すには、節 2.5のように以下の２式が成立する事を確認すればよい。

f(x+ y) = f(x) + f(y)

f(cx) = cf(x)

これは以下のように展開すれば簡単に確認する事ができる。
d

dx
{Pn(x) +Qn(x)} =

d

dx
{(p0 + p1x+ · · ·+ pnx

n) + (q0 + q1x+ · · ·+ qnx
n)}

=
d

dx
{(p0 + q0) + (p1 + q1)x+ · · ·+ (pn + qn)x

n}

= (p1 + q1) + 2(p2 + q2)x+ · · ·+ n(pn + qn)x
n−1

= (p1 + 2p2x+ · · ·+ npnx
n−1) + (q1 + 2q2x+ · · ·+ nqnx

n−1)

=
d

dx
Pn(x) +

d

dx
Qn(x)

d

dx
{cPn(x)} =

d

dx
{c(p0 + p1x+ · · ·+ pnx

n)}

=
d

dx
{cp0 + cp1x+ · · ·+ cpnx

n}

= cp1 + 2cp2x+ · · ·+ ncpnx
n−1

= c
d

dx
Pn(x)

■微分操作を行列で表現してみる
微分操作が線形写像である事がわかったので、次に f(x) = a0 + a1x+ a2x

2 としたときに、以下の線形写
像 T [f(x)]を行列表現してみる事を考えてみる。

T [f(x)] = f(x) + f
′
(x)

まず f(x) = a0 + a1x+ a2x
2 を以下のように行列表現してみる。ここでは、f(x)を行ベクトル (1 x x2)を

基底とし、それぞれの基底に対する係数を (a0 a1 a2)として成立している関数であると捉える。

f(x) =
(
1 x x2

)a0
a1
a2


同じ考え方で T [f(x)]を行列表現してみよう。まず T [f(x)]を展開すると

T [f(x)] = (a0 + a1x+ a2x
2) + (a1 + 2a2x)

= (a0 + a1) + (a1 + 2a2)x+ a2x
2
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なので、上記と同じように表現すると

T [f(x)] =
(
1 x x2

) a0 + a1
a1 + 2a2

a2


つまり、元の係数ベクトル (a0 a1 a2) が、微分を含む線形写像 T [f(x)] によって、新しい係数ベクトル
(a0 + a1 a1 + 2a2 a2)に変換されたと考える事ができる。

T [f(x)] =
(
1 x x2

)◦ ◦ ◦
◦ ◦ ◦
◦ ◦ ◦

a0
a1
a2


この時上記の ◦の部分を書き下してみると以下のようになる。

T [f(x)] =
(
1 x x2

)1 1 0
0 1 2
0 0 1

a0
a1
a2


この行列が線形写像を表す「表現行列」と言われるものである。ここでは以下のように行列 Aと表記する事
にする。

A =

1 1 0
0 1 2
0 0 1



ちなみに単純な微分 f
′
(x)だけを行列表現すると以下のようになり、

f
′
(x) = a1 + 2a2x

=
(
1 x x2

)0 1 0
0 0 2
0 0 0

a0
a1
a2


以下のように T [f(x)]の行列表現は「単位行列」と「微分の表現行列」との和となっている。1 1 0

0 1 2
0 0 1

 =

1 0 0
0 1 0
0 0 1

+

0 1 0
0 0 2
0 0 0



■基底が異なると実態は同じなのに表現は異なってくる
実は、基底を変える事で行列やベクトルの表現は変化する。この事は、節 6で詳細に述べるので、ここでは
微分の事例を使って少し応用的な雰囲気を出しながら示していこう。

先と同様に今度は f(x) = a0 + a1xという関数を考え、その f(x)を使って以下の変換 T [f(x)]を行列で表
現する事にする。

T [f(x)] = f(x) + 2f
′
(x)

先の事例と異なるのは簡単にするために f(x)を一次式にしている点である。
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まず基底を E1 =
(
1 x

)
とした時の T [f(x)]を行列表現すると以下のように表す事ができる。

T [f(x)] = f(x) + 2f
′
(x)

= (a0 + a1x) + 2a1 = (a0 + 2a1) + a1x

=
(
1 x

)(1 2
0 1

)(
a0
a1

)
この時、新たな基底を E2 =

(
2 + x 3 + 2x

)
にした時に、T [f(x)]の行列表現がどのように変わるかを見て

みよう。ここで、図 12のように基底が変われば係数ベクトルも変わる事に注意しよう。図 12の赤丸は、基底
E1 の世界では (5 3)であるが基底 E2 の世界では (1 1)となる。

図 12 基底を変えると係数ベクトルも変わる

なので、基底 E1 での係数ベクトルを a =

(
a0

a1

)
とし、基底 E2 での係数ベクトルを b =

(
b0

b1

)
とすると

図 13の左側のタテ等号が表すように E1a = E2bとなる。

基底 の世界

基底 の世界

図 13 基底変換による線形変換の表現行列の変化

また、先に述べたように線形写像 T の行列表現は「E1 の世界」では以下のようになる。

T [f(x)] =
(
1 x

)(1 2
0 1

)(
a0
a1

)
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この行列を以下のようにAとする。
A =

(
1 2
0 1

)
この Aは T [f(x)] = (a0 + 2a1) + a1xから比較的簡単に書き下す事ができ、T による線形変換は図 13の右
上のように E1Aaとあらわす事ができる。

■基底を変換する事で表現行列がどのように変化するか？
ここから本題である「基底 E2 の世界」の線形変換 T がどのように表現されるかを見ていく。まず、そもそ
もE2 の世界でも同じ線形変換 T が存在するとする。そして、その表現行列がB であるとする。そうすると、
変換 T は図 13の右下のように、E2Bbとあらわす事ができる。
ただし、このB を求めるのは以下の関係を満たすようにする必要があり、簡単ではない。

T [f(x)] =
(
2 + x 3 + 2x

)(◦ ◦
◦ ◦

)(
b0
b1

)
= (a0 + 2a1) + a1x

そこで、２つの基底を変換する行列を求め、それを活用してB を求める事にする。まずE2 = E1P となる
ような行列 P が存在するとしてその行列を求めると、簡単に書き下す事ができて

(
2 + x 3 + 2x

)
=
(
1 x

)(2 3
1 2

)
つまり P は基底 E1 を基底 E2 に変換する行列である。また E2 = E1P の右から逆行列 P−1 をかけると
E1 = E2P

−1 となる。つまり、
(
1 x

)
=
(
2 + x 3 + 2x

)( 2 −3
−1 2

)
ここまでを整理しておくと、それぞれの基底を変換するには

E2 = E1P (2.7)

E1 = E2P
−1 (2.8)

この時の P 及び P−1 は

P =

(
2 3
1 2

)
(2.9)

P−1 =

(
2 −3
−1 2

)
(2.10)

ではB を求める事にしょう。その手順を下の図を参照しながら説明する。この図は先の図 13を簡略化した
ものである。

『E1 の世界』 (b) E1a
a=Pb−−−−→ (c) E1Aa

E1Pb ↑ ↓ E2P−1APb

『E2 の世界』 (a) E2b (d) E2Bb

図 14 基底変換によって 2つの世界を行き来する

• (a)に式 (2.7)を代入すると E1Pb。
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• これは (b)の E1aと同じ（E1a = E1Pb）なので、a = Pb

• a = Pbを (c)に代入すると (c)は E1APb

• この E1APbに式 (2.8)を代入すると E2P
−1APb

• この E2P
−1APbが E2Bbと同じなので、B = P−1AP

以上のように、『E1 の世界』で Aとあらわす事が出来た線形写像 T は、別の基底である『E2 の世界』で
は、P−1AP とあらわす事ができる。この時の P は、基底 E1 を基底 E2 に変換する行列である。
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3 行列の演算
行列が線形写像を表すという事を利用して、行列の演算について簡単にまとめる。行列の演算について注意
するのは、積の交換則が成り立たない AB 6= BA事である。また、スカラー演算の割り算にあたる逆行列は
全単射の写像の場合（つまり正則な場合）のみ成立する事も写像の概念で捉えると納得できる。その他、単位
行列・対角行列・三角行列などの幾つかの特別な名前のついた行列についてまとめておく。
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3.1 行列演算の捉え方～内積、外積、列の線型結合、行の線型結合について～
一般的に行列の演算は後で述べるような内積の考え方で計算するが、実は外積の考え方で計算する事も可能
である。また、行列とベクトルの積においては、列ベクトルの線形結合と捉える方法もあるし、行ベクトルの
線型結合ととらえる方法もある。こうした考え方は列空間や行空間と自然に結びついた非常に応用範囲の広い
捉え方である*5。

■内積と外積を比較する 　
以下のような２つのベクトル aと bとを事例に　内積と外積という２つのベクトルの積について比較をし
てみる。

a =

1
2
3

 b =

x1

x2

x3


• 内積 (inner product)

a⊤bまたは a · bまたは < a, b >と表記される。結果は１つの数（スカラー）となる。

a⊤b =
(
1 2 3

)x1

x2

x3

 = x1 + 2x2 + 3x3

• 外積（outer product） *6　
ab⊤ または a⊗ bと表記され結果は行列となる。

ab⊤ =

1
2
3

(x1 x2 x3

)
= 　

 x1 x2 x3

2x1 2x2 2x3

3x1 3x2 3x3


この行列は、３つの列はベクトル aの倍数であり、３つの行はベクトル bの倍数になっており、行列
のランクが１である事がわかる。この行列をストラング [20]は「ランク１行列」と呼んでいる。

このように、内積は２つのベクトルを「行ベクトル×列ベクトル」にして演算したもので、外積は「列ベク
トル×行ベクトル」にして演算したものである。

■行列の積
内積と外積の考え方は行列の積にも適用できる。以下のような行列の積 A3×2B2×3 = C3×3 の計算を例に、
積を内積で計算する方法と外積で計算する方法について調べてみよう。

*5 ストラング [20]が提唱した方法。その書籍の翻訳者である平鍋健児さんが日本語版の付録の中で図解付きで整理している。図につ
いては以下に最新版がある。
https://github.com/kenjihiranabe/The-Art-of-Linear-Algebra?tab=readme-ov-file

https://github.com/kenjihiranabe/The-Art-of-Linear-Algebra/blob/main/The-Art-of-Linear-Algebra-j.pdf

*6 外積は、ここで意味する直積 (direct product) とクロス積の意味でつかわれる事があるので注意が必要。クロス積は a× bと表
記され、a× b = |a||b| sin θ で定義される。ベクトル aと bの作る平行四辺形の面積を意味する。
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a11 a12
a21 a22
a31 a32


︸ ︷︷ ︸

A

(
b11 b12 b13
b21 b22 b23

)
︸ ︷︷ ︸

B

=

c11 c12 c13
c21 c22 c23
c31 c32 c33


︸ ︷︷ ︸

C

内積の考え方で行列の積を解く
行列 C の i行 j 列の値は、以下のように行列 Aの行を取り出した行ベクトル a∗

i と行列 B の列を取り
出した列ベクトル bj との内積 a∗

i bj を計算して求める*7。
− a∗

1 −

− a∗
2 −

− a∗
3 −




| | |

b1 b2 b3

| | |

 =


a∗
1 · b1 a∗

1 · b2 a∗
1 · b3

a∗
2 · b1 a∗

2 · b2 a∗
2 · b3

a∗
3 · b1 a∗

3 · b2 a∗
3 · b3



=


a11b11 + a12b21 a11b12 + a12b22 a11b13 + a12b23

a21b11 + a22b21 a21b12 + a22b22 a21b13 + a22b23

a31b11 + a32b21 a31b12 + a32b22 a31b13 + a32b23


これが最初に習う方法で、一般に行列の積は成分毎に「行と列の内積」を取ったものである。

外積の考え方で行列の積を解く
今度は外積の考え方である。以下のように行列 Aから列を取り出した列ベクトル ai と行列 B の行を
取り出した行ベクトル b∗j との外積 aib

∗
j を計算して求める

| |

a1 a2

| |


− b∗1 −

− b∗2 −

 = a1b
∗
1 + a2b

∗
2 =


a11

a21

a31

(b11 b12 b13
)
+


a12

a22

a32

(b21 b22 b23
)

=


a11b11 a11b12 a11b13

a21b11 a21b12 a21b13

a31b11 a31b12 a31b13

＋

a12b21 a12b22 a12b23

a22b21 a22b22 a22b23

a32b21 a32b22 a32b23



=


a11b11 + a12b21 a11b12 + a12b22 a11b13 + a12b23

a21b11 + a22b21 a21b12 + a22b22 a21b13 + a22b23

a31b11 + a32b21 a31b12 + a32b22 a31b13 + a32b23


aib

∗
i は 3× 3の行列になる。またランクは 1になる。なぜなら、aib

∗
i は以下のように列ベクトルの行

倍であり、行ベクトルの列倍でもあるからである。このように C = AB をランク 1の行列の和として

*7 ここでは、行列の要素を行ベクトルとして取り出す場合と列ベクトルとして取り出す場合とを区別するために行ベクトルとして取
り出す場合には ∗を付けて表現している。
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求める事ができる。

ab∗ =

 b1


a1

a2

a3

 b2


a1

a2

a3

 b3


a1

a2

a3


 =


a1
(
b1 b2 b3

)
a2
(
b1 b2 b3

)
a3
(
b1 b2 b3

)


また積が成立する（つまり、C = AB なら A の列数と B の行数が同じ）行列の列ベクトル、行ベク
トルをとってくるなら以下のように、あたかもベクトルを成分とするベクトルの内積のように計算で
きる。

(
a1 a2

)(b∗1
b∗2

)
= a1b

∗
1 + a2b

∗
2

一般にベクトルを要素とする行列の積が定義されている訳ではないが、演算は可能であり、この記法は
射影行列を求める場面など、色々な場面で出てくる。

例題 3.1. 以下の行列の積を内積による演算と外積による演算で計算せよ。1 4
2 5
3 6

( 7 8 9
10 11 12

)

　内積による演算1 4
2 5
3 6

( 7 8 9
10 11 12

)
=

 7 + 40 8 + 44 9 + 48
14 + 50 16 + 55 18 + 60
21 + 60 24 + 66 27 + 72

 =

47 52 57
64 71 78
81 90 99


　外積による演算1 4

2 5
3 6

( 7 8 9
10 11 12

)
=

1
2
3

(7 8 9
)
+

4
5
6

(10 11 12
)

=

 7 8 9
14 16 18
21 24 27

+

40 44 48
50 55 60
60 66 72

 =

47 52 57
64 71 78
81 90 99


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■列の線形結合と行の線形結合 　
行列 Aとベクトル xの積において、行列 Aを列ベクトルの集まり、行ベクトルの集まりとしてみる事で、
計算結果を行列 Aの列ベクトルまたは行ベクトルの線形結合として捉える事ができる。これが重要な考え方
を生み出す。

• 列ベクトルの線形結合　 Axを行列 Aの列の線形結合としてみる見方。
普通に計算すると以下のように、「行ベクトル×列ベクトル」の積和で計算する。

Ax =

1 2
3 4
5 6

(x1

x2

)
=

 x1 + 2x2

3x1 + 4x2

5x1 + 6x2


同じ結果なのだが、これを列ベクトルの線形結合として捉え直してやると以下。

Ax =

1 2
3 4
5 6

(x1

x2

)
= x1

1
3
5

+ x2

2
4
6


• 行ベクトルの線形結合　 　 xAを行列 Aの行の線形結合としてみる見方。
今度は行列とベクトルのかける順番が逆になる。これも普通に計算すると以下のように、「行ベクトル
×列ベクトル」の積和で計算する。

xA =
(
x1 x2 x3

)1 2
3 4
5 6

 =
(
x1 + 3x2 + 5x3 2x1 + 4x2 + 6x3

)
同じ結果なのだが、これを行列 Aの行ベクトルの線形結合として捉えなおすと以下。

xA =
(
x1 x2 x3

)1 2
3 4
5 6

 = x1

(
1 2

)
+ x2

(
3 4

)
+ x3

(
5 6

)
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■行列同士の積の４つの見方
行列同士の積 AB = C についても、同じ計算に対して４つの捉え方が可能になる。

• 内積　「行ベクトル×列ベクトル」として捉える
。基本の計算方法。行列 Aの行ベクトルと行列 B の列ベクトルの積和として計算する。

AB =

1 2
3 4
5 6

(x1 y1
x2 y2

)
=

 x1 + 2x2 y1 + 2y2
3x1 + 4x2 3y1 + 4y2
5x1 + 6x2 5y1 + 6y2



• 列の線形結合　「列ベクトル×列ベクトル」として捉える。
Aを基底となる列ベクトル、B を係数となる列ベクトルとして捉える。つまり、行列 C の１列目の要
素は、Aの１列目の列ベクトルに対して B の１列目の列ベクトルを係数とする線形結合となる。２列
目も同様。

AB =

1 2
3 4
5 6

(x1 y1
x2 y2

)
=

x1

1
3
5

+ x2

2
4
6

 y1

1
3
5

+ y2

2
4
6

 =

 x1 + 2x2 y1 + 2y2
3x1 + 4x2 3y1 + 4y2
5x1 + 6x2 5y1 + 6y2



• 行の線形結合　「行ベクトル×行ベクトル」として捉える。
今度は*8B を基底となる行ベクトル、Aを係数となる行ベクトルとして捉える。結果行列 C の１行目
の要素は、B の１行目の行ベクトルに対して A の１行目の行ベクトルを係数とする線形結合となる。
２行目と３行目も同様。

AB =

1 2
3 4
5 6

(x1 y1
x2 y2

)
=

1 (x1 y1
)
+ 2

(
x2 y2

)
3
(
x1 y1

)
+ 4

(
x2 y2

)
5
(
x1 y1

)
+ 6

(
x2 y2

)
 =

 x1 + 2x2 y1 + 2y2
3x1 + 4x2 3y1 + 4y2
5x1 + 6x2 5y1 + 6y2



• 外積 　内積の逆で「列ベクトル×行ベクトル」として捉える。
行列 Aの列ベクトルと行列 B の行ベクトルの積和として計算する。

AB =

1 2
3 4
5 6

(x1 y1
x2 y2

)
=

1
3
5

(x1 y1
)
+

2
4
6

(x2 y2
)

=

 x1 y1
3x1 3y1
5x1 5y1

+

2x2 2y2
4x2 4y2
6x2 6y2

 =

 x1 + 2x2 y1 + 2y2
3x1 + 4x2 3y1 + 4y2
5x1 + 6x2 5y1 + 6y2


ランク１行列の和に分解されている事がわかる。

*8 行列とベクトルの積は、後ろから掛けると列に作用、前から掛けると行に作用する。なので、列の線形結合の場合は後ろの行列 B

が係数になり、行の線形結合の場合は前の行列 Aが係数となる。

26



3.2 行列の基本演算法則
行列の交換則・結合則・分配則� �

• 行列の和・差演算に関しては、交換則、結合則いずれも成り立つ。

A+B = B +A (A+B) + C = A+ (B + C)

• 行列の積演算に関しては、結合則は成り立つが交換則は成り立たない。

(AB)C = A(BC) AB 6= BA

• 次のような分配則が成り立つ。
A(B + C) = AB +AC� �

■行列の積の交換則は成立しない 行列の演算には、以下のようにほぼ通常のスカラーの加減乗除と同じ法則
が成り立つ。ただし、行列の積演算では、通常のスカラー演算と異なり以下の交換則がなりたたない。その事
を確認しておこう。

AB 6= BA (3.1)

いま次のような行列 Aと B で確認してみよう。

A =

(
0 −1
1 0

)
, B =

(
2 0
0 1

)
Aは、90°の回転行列であり*9、B は横に２倍する行列である。図 15に Aをかけて次に B をかけた場合と、
逆の順番にかけた場合の違いを示した。

B

A

B

A

y = ABx

y = BAx

図 15 AB ̸= BAである事の説明図

図 15のように、「回転して→横に伸ばす」写像の結果（y = BAx）と、「横に伸ばして→回転する」写像の
結果 (y = ABx)をみると、最初の 2等辺三角形の変換結果が全く異なる。つまりどういう順番で操作するか
によって結果が変わるのであり、AB 6= BAである。

*9 回転行列は、
(

cos θ − sin θ

sin θ cos θ

)
。ここで θ = 1

2
π とすると、sin = 1、cos = 0なので Aは 90°の回転行列である。
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3.3 ゼロ行列・単位行列
次に、幾つかの特別な名前のついた行列についてまとめておく。
ゼロ行列・単位行列� �
ゼロ行列 　すべての成分が 0の行列をゼロ行列と呼び、Oと書く
単位行列 　対角成分だけが１で、他は全てゼロの行列を単位行列と呼び、Iと書く� �

■ゼロ行列の補足 ゼロ行列は、任意のベクトル x に対して、Ox = 0 なので、全てを原点に移す写像であ
る。このゼロ行列については、通常のスカラーのゼロと違って、幾つか注意すべき事がある。

• A 6= Oかつ B 6= Oなのに、BA = Oがありえる。例えば、

B =

(
0 1
0 1

)
, A =

(
1 0
0 0

)
は A 6= Oかつ B 6= Oなのに、BA = Oである。

• A 6= Oなのに、A2 = Oがありえる。例えば、

A =

(
0 −1
0 0

)
なら、 A2 =

(
0 −1
0 0

)(
0 −1
0 0

)
= O

3.4 対角行列
対角行列は軸にそっての伸縮写像を表す� �

1. 対角行列 Aは、以下のようにそれぞれの軸を対角成分倍している。

Ax = x1


a1
0
...
0

+ x2


0
a2
...
0

+ · · ·+ xn


0
0
...
an

 (3.2)

2. Aと B が対角行列なら行列の積は、単純に成分同士のかけ算である。

AB =

 a1b1
. . .

anbn

 (3.3)

� �
対角行列は以下のように定義される。

定義 3.1. 対角行列の定義　
対角成分以外が全てゼロである行列を対角行列と呼び、そのゼロでない対角成分（a1, a2, · · · , an）を並べ
て、diag(a1,a2, · · · ,an)と書く

この対角行列が表している写像は「軸に沿っての伸縮」であり、基底座標をそれぞれの対角成分倍するとい
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う特殊な写像である。対角行列どうしの積は単純に成分同士のかけ算であり、対角行列のべき乗も成分のべき
乗になるという簡単な構造を持っている。その事を簡単に確認しておこう。

■対角乗列は座標軸に沿っての伸縮を意味する いまあるベクトル x = (x1 x2 · · · xn)
t があったとすると、

以下のように表す事ができる。

x = x1


1
0
...
0

+ x2


0
1
...
0

+ · · ·+ xn


0
0
...
1


これを以下のような対角行列で変換してみるとどうなるであろうか。

A =


a1 0 · · · 0
0 a2 · · · 0
...

...
. . .

...
0 0 · · · an


行列 Aによって、基底となっている各座標軸 e1 = (1 0 · · · 0)t、e2 = (0 1 · · · 0)t、en = (0 0 · · · 1)t が

a1 0 · · · 0
0 a2 · · · 0
...

...
. . .

...
0 0 · · · an




1
0
...
0

 =


a1
0
...
0




a1 0 · · · 0
0 a2 · · · 0
...

...
. . .

...
0 0 · · · an




0
1
...
0

 =


0
a2
...
0


のように、それぞれの対角成分倍に変換されるので、結局 Axは以下のように変換される。

Ax = x1


a1
0
...
0

+ x2


0
a2
...
0

+ · · ·+ xn


0
0
...
an


つまり、対角行列は、それぞれの軸を対角成分倍している。別の言い方をすればそれぞれの座標軸に沿っての伸縮
をしている事になる。

■対角行列同士の積 対角行列どうしなら行列の積も単純に成分同士のかけ算である。例えば、

A =

 a1
. . .

an

 B =

 b1
. . .

bn


とするとき

AB =

 a1b1
. . .

anbn


■対角行列のべき乗 　同様に対角行列のべき乗も単なる成分のべき乗である。

An =

 an1
. . .

ann


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3.5 逆行列
逆行列の定義� �

1. 行列 Aに逆行列が存在するためには、Aが正則行列である必要がある。
2. 以下の式が成立する２つの行列 Aと A−1 は互いに逆行列であるという。

AA−1 = A−1A = I (3.4)

3. 以下のように二次の正方行列 Aの逆行列は

A =

(
a b
c d

)
なら、 A−1 =

1

ad− bc

(
d −b
−c a

)
(3.5)

4. 以下のように積の逆行列は順番が逆になる。

(AB)−1 = B−1A−1 (3.6)� �
■逆行列が存在するためには正則行列である必要がある 一般に逆行列は存在したりしなかったりする。
ある行列の逆行列が存在するためには、その行列が正則行列である必要がある。正則行列とは以下のよう
に、全射でありかつ単射な写像である。

定義 3.2. V からW への線形写像 f が全単射であり１対１対応する時、f は正則な写像であるといい、そ
の線形写像 f の表現行列 Aを正則行列と呼ぶ。

10ページに述べたように、写像 f : V → W が正則な写像ならば、W の各要素 wn に対して、f(vn) = wn

となる元の集合 V の要素がただひとつ定まるので、逆に wn を vn に対応させる逆写像 f−1 : W → V が存在
する。つまり、f が正則な写像ならば、写像 f の表現行列 Aとし、f−1 の表現行列を A−1 とすると

AA−1 = A−1A = I

が成立する。上式を満たす２つの行列 Aと A−1 は互いに逆行列であるという。

■逆行列が存在するならその写像は正則である 行列 Aが正方行列の場合、逆行列が存在すれば、行列 Aは
正則行列である。

定理 3.1. 　 n次正方行列 Aに対して、
AX = XA = I

となる n次正方行列 X が存在するとき、Aは正則行列である。

なぜならば、正方行列 Aが写像 f : V → W を表しているとき、逆行列が存在するならば、W の各要素 wn

に対して、f(vn) = wn となる元の集合 V の要素がただひとつ定まり１対１対応である。また行列 Aは正方
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行列なので写像 f は n次元空間から n次元空間への写像である*10。つまり単射であり全射でもあるので正則
写像である。

■逆行列はあるとしてもただ 1つしかない 　行列 Aの逆行列が存在するとすると、それはただひとつしか
ありえない。
確認してみよう。仮に行列 Aに対して

AX = XA = I, AY = Y A = I

を満たす２つの逆行列 X と Y があったとしてみよう。

XAY = (XA)Y = IY = Y

XAY = X(AY ) = XI = X

であるから結局
X = Y

もし逆行列が２つ存在したとしても、それは同じ行列であるという事になる。

■2× 2の逆行列を求めると 　２次の正方行列には、逆行列を求める公式がある。

A =

(
a b
c d

)
ad− bc 6= 0

であるとき*11、逆行列は

公式 3.1.

A−1 =
1

ad− bc

(
d −b
−c a

)

というように計算する事ができる。

■積の逆行列は順番に注意 　以下のように積の逆行列は順番が逆になる。

公式 3.2.
(AB)−1 = B−1A−1

これは、図 16を見れば明らかであり、「Aで変換して、さらに B で変換」したものを戻すには、「まず B−1

で逆変換して、ついで A−1 で逆変換」すれば良い。
確かに以下のように計算すれば、確かに B−1A−1 が AB の逆行列になっている事がわかる。

(AB)(B−1A−1) = A(BB−1)A−1 = AIA−1 = I

行列の積は結合則は成り立つが、交換則は成り立たないので A−1B−1 では逆行列として計算できない。

*10 71ページのように、1対 1写像なら線形独立なベクトルは独立性を保ったまま写像するので、空間の次元は変わらない。
*11 ad− bc ̸= 0は、逆行列が存在する場合と同じ意味である。ここで、|A| = 0は、44ページのように、列ベクトルがお互いに線形
従属であり、写像として考えると単射でないという事を意味している。
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A
V

n

V
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図 16 行列の積の逆写像

複数の積の逆行列を求めたい場合も、

(ABCD)−1 = D−1C−1B−1A−1

というように逆順にかけていけば良い。
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3.6 正則行列
　 10ページの定義 2.4のように、正則行列は全射かつ単射である写像を表す行列である。また 92ページに
示すように、正則行列によって２つのベクトル空間 V とW が結びつけられるなら、その２つのベクトル空間
V とW はお互いに同じ構造をもったベクトル空間となっている。このように正則行列は特殊な行列である。
その性質を考えてみよう。
正則行列の性質� �

1. 10ページの定義 2.4のように、正則行列の表す写像は、全射で単射（１対１の上への写像）である。
2. 前節 3.5でみたように、正則行列には逆行列が存在する。そして、それは必ず１つである。
3. 正則行列は、ベクトルの独立性を変えない。なので写像された空間の次元を変化させない。
4. 正則行列の列ベクトルは互いに線形独立である
5. 正則行列による変換は、基底を変換していると考えられる。つまり、正則行列は基底変換行列で
ある。� �

ここでは、上記の３、４、５を説明しよう。

■正則行列は空間の次元を変えない 行列 Aを n× nの正則行列とすると、行列 Aによる写像は、n次元空
間 Vn から n次元空間Wn への写像である。このとき、元々の n次元空間 Vn の線形独立なベクトルの像が、
またWn の線形独立なベクトルになっているなら、空間の次元*12を変えない。なのでまずは、正則行列が線
形独立なベクトルの独立性を変えないという事を調べよう。
行列 Aを n× nの正則行列とすると、行列 Aは１体１の線形写像である。この時 x1, x2, · · · , xn が線形独
立であるにもかかわらず、それぞれの写像先である y1, y2, · · · , yn が線形従属であると仮定しよう。
y1, y2, · · · , yn が線形従属ならば、

d1y1 + d2y2 + · · ·+ dnyn = 0

となるゼロでない係数（d1 = d2 = · · · = dn = 0でない係数）が存在することになる。いまゼロでない係数を
yi とすると、その yi は

yi =
d1
di

y1 +
d2
di

y2 + · · ·+ dn
di

yn

というように、他のベクトルの線形結合で表されることになる。ここで、この写像は１対１なので、それぞれ
y1, y2, · · · , yn に対応する元ベクトル x1, x2, · · · , xn が存在することになる。なので、上の式は

cixi = c1x1 + c2x2 + · · ·+ cnxn

というように、xi がその他の x1, x2, · · · , xn のベクトルの線形結合で表すことができる事になる。これは、
元々の x1, x2, · · · , xn が線形独立であるという仮定に反する。なので、y1, y2, · · · , yn が線形従属ではない。
つまり、元々の n次元空間 Vn の線形独立なベクトルの像が、またWn の線形独立なベクトルになっている
ので、正則行列は空間の次元を変えないことを意味している。

*12 次元とは、7ページの節 7で述べたように、その空間に含まれる線形独立なベクトルの数の最大個数である。
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■正則行列の列ベクトルは線形独立である 　つぎに、正則行列の列ベクトルが互いに線形独立であることを
確認しよう。14ページで説明したように、Axを空間基底の変換としてみると

1
0
...
0

⇒


a11
a21
...

an1




0
1
...
0

⇒


a12
a22
...

an2

 · · ·


0
0
...
1

⇒


a1n
a2n
...

ann


というように、元々の基底ベクトルを行列 Aの列ベクトルからなる基底ベクトルで表現している事に他なら
ない。元々の基底ベクトルは線形独立なので、当然行列 Aの列ベクトルも線形独立である。

■新しい基底での座標値を求める このように正則行列 Aは、任意のベクトル xを、新たに Aの列ベクトル
を基底とした空間に変換する事を意味している。では、同じ点を新しい基底で表現するとどのような座標値に
なるのかを調べてみよう。具体例として 13ページの例を取り上げると、

A =

(
2 1
1 3

)

という行列 Aによって、基底ベクトル
(

1

0

)
が
(

2

1

)
に、

(
0

1

)
が
(

1

3

)
に移っていると考えられる。

その様子を示したのが図 17である。
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図 17 線形変換による空間の変形の様子

いま、ある点 xを x =

(
3

4

)
としたとき、この点を、新しい基底

(
2

1

)
と
(

1

3

)
で表してみよう。求

めたい新しい基底での座標を
x′ =

(
x′
1

x′
2

)
とする。つまり

x′ = x′
1

(
2
1

)
+ x′

2

(
1
3

)
=

(
2 1
1 3

)(
x′
1

x′
2

)
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とする。これがもともとのベクトル xと同じなので(
3
4

)
=

(
2 1
1 3

)(
x′
1

x′
2

)
つまり、x = Ax′ を解けばよい。Aは正則行列で逆行列を持つので、逆行列 A−1 が存在し

A−1 =
1

5

(
3 −1
−1 2

)
を両辺にかけて

x′ = A−1x =
1

5

(
3 −1
−1 2

)(
3
4

)
=

(
1
1

)

つまり、図 18のように、同じ点を元々の基底で表現すると
(

3

4

)
であり、新しい基底で表現すると

(
1

1

)
となる。
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図 18 基底を変えると座標も変わる

このように

正則行列 Aは、任意のベクトル xを、新たに Aの列ベクトルを基底とした空間に変換する事を意味してお
り、ベクトル xが、新しい基底でどのような座標値として表されるかは、x′ = A−1xを求めればよい。

n× n行列 Aに関する次の条件はすべて同値

• A のランクが n

• 行列式 |A| が 0 でない
• 逆行列 A−1 が存在する
• 連立 1 次方程式 Ax = bが唯一の解をもつ

このような行列 A を正則行列，そうでないものを特異行列と呼ぶ．
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3.7 転置行列
転置行列の性質� �
行列の行と列を入れ替えたものを転地行列と呼び、行列 Aの転置行列を AT または At と書く。転置行
列については以下の性質が成り立つ。

(At)t = A (3.7)

(A+B)t = At +Bt (3.8)

(AB)t = BtAt (3.9)

(A−1)t = (At)−1 (3.10)� �
式 (3.9)と式 (3.10)について説明を加える。

■行列の積の転置は順番が逆になる 　まず式 (3.9)の行列の積の転置 (AB)t = BtAt を確認しよう。
いま、m× nの行列 Aと n× lの行列 B があったとする。そして、以下のように Aを行ベクトルに、B を
列ベクトルに分解して表現しておく。

A =

 a11 · · · a1n
...

...
...

am1 · · · amn

 =

 a1
...

am


B =

 b11 · · · b1l
...

...
...

bn1 · · · bnl

 =
(
b1 · · · bl

)
このとき、

AB =

 a1b1 · · · a1bl
...

. . .
...

amb1 · · · ambl


なので

(AB)t =

 a1b1 · · · amb1
...

. . .
...

a1bl · · · ambl

 (3.11)

いっぽう、今度は分解の方向を変えて、転置行列 Bt を行方向、転置行列 At を列方向に分解して、先ほどの
行ベクトル a1, a2, · · · , an の組と列ベクトル b1, b2, ·, bl の組で表すと

Bt =

 b11 · · · bn1
...

...
...

b1l · · · bnl

 =

 b1
t

...
bl

t


At =

 a11 · · · am1

...
...

...
a1n · · · amn

 =
(
a1

t · · · am
t
)
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なので

BtAt =

 b1
ta1

t · · · bl
tam

t

...
. . .

...
bl

ta1
t · · · bl

tam
t

 (3.12)

ここで

aibj =
(
ai1 · · · ain

) bj1
...

bjn

 =

n∑
k=1

aikbjk

bj
tai

t =
(
bj1 · · · bjn

) ai1
...

ain

 =

n∑
k=1

bjkaik

つまり、aibj = bj
tai

t であり、式 (3.11)と式 (3.12)は同じものであり、(AB)t = BtAt である。

■逆行列の転置 式 (3.10)の逆行列の転置の公式 (A−1)t = (At)−1 を確認しよう。これは、行列の積の転置
の公式 (AB)t = BtAt を利用して、(A−1)t が At の逆行列になっている事を示せば良い。
まず、以下のように Aと A−1 の積の転置を考える。

(AA−1)t = (A−1)tAt

この時、AA−1 = I なので
(A−1)tAt = I

つまり、逆行列の定義 (3.4)より、(A−1)t は At の逆行列であり

(A−1)t = (At)−1
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3.8 ブロック行列
ブロック行列� �
以下のように、行列の縦横に区切り線を入れて、各ブロックに分けて、それぞれのブロックをあたかも 1

つの数値のように見なして、A11, A12, · · · と表示したものをブロック行列と呼ぶ。

A =


3 1 4 1 5 9 2
6 5 3 5 8 9 7
9 3 2 3 8 4 6
2 6 4 3 3 8 3
2 7 9 5 0 2 8

 =

(
A11 A12 A13

A21 A22 A23

)

こうしたブロック行列の場合、それぞれのブロック行列の成分行列 Aij を、あたかもスカラー成分のよ
うに扱って計算してよい。� �

■ブロック行列の演算 足し算や定数倍について、スカラー演算のように計算できるのはある意味当たり前だ
が、かけ算についてこれが成り立つのは便利である。

ブロック行列の足し算 　サイズの揃ったブロック行列を A = (Aij)と B = (Bij)とすると A11 · · · A1n

...
. . .

...
Am1 · · · Amn

+

 B11 · · · B1n

...
. . .

...
Bm1 · · · Bmn

 =

 A11 +B11 · · · A1n +B1n

...
. . .

...
Am1 +Bm1 · · · Amn +Bmn


ブロック行列の定数倍 　ついで、ブロック行列を A = (Aij)とし、cを定数とすると

c

 A11 · · · A1n

...
. . .

...
Am1 · · · Amn

 =

 cA11 · · · cA1n

...
. . .

...
cAm1 · · · cAmn


ブロック行列のかけ算 　かけ算が出来る、つまり、n ×mのブロック行列 A(nm) と m × nのブロック行列

B(mn) のかけ算の場合、 A11 · · · A1m

...
. . .

...
An1 · · · Anm


 B11 · · · B1n

...
. . .

...
Bm1 · · · Bmn


=

 (A11B11 + · · ·+A1mBm1) · · · (A11B1n + · · ·+A1mBmn)
...

. . .
...

(An1B11 + · · ·+AnmBm1) · · · (An1B1n + · · ·+AnmBmn)


以上のように、各ブロック行列をスカラーのように扱って行列計算できる。ただしかけ算の場合は、行列のか
け算は、スカラーかけ算と違って交換則が成り立たないので、AijBkl を BklAij というように、順序を入れ替
えてはいけない。

■ブロック対角行列 　さらにブロック行列であって、対角線上のブロックが全て正方行列で、それ以外の
ブロックが全てゼロ行列の場合をブロック対角行列を呼ぶ。ブロック対角行列については以下の演算が成り
立つ。
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ブロック対角行列のべき乗 　ブロック行列を A = (Ai)とし、k を定数とすると A1

. . .

An


k

=

 A1
k

. . .

An
k


ブロック対角行列の逆行列 　  A1

. . .

An


−1

=

 A1
−1

. . .

An
−1


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4 行列式
行列式とは、行列 Aの列ベクトル（または行ベクトル）が作る平行超平面体の体積の事であり、|A|または

detAと書く。また、この行列式 |A|は、行列 Aによる線形変換によって拡大・縮小される率を示す。

4.1 行列式は面積を表している
２次の正方行列の行列式� �
以下のような２次の正方行列 Aならば、

A =

(
a b
c d

)
の行列式は detA = |A| = ad− bc (4.1)

この行列式 |A|は、行列 Aの列ベクトルが作る平行四辺形の面積を示す。� �
実際に、以下のように行列 Aの２つの列ベクトル a⃗と b⃗が作る平行四辺形の面積を求めてみよう。

A =

(
a b
c d

)
a⃗ =

(
a
c

)
b⃗ =

(
b
d

)
求める平行四辺形の面積は、図 32の (a)の影の部分である。この面積は図 32の (b)や (c)のようにベクト
ル a⃗に平行にズラしても面積は変わらない。なので、(c)のように y 軸に接するように変形してやれば、求め
る面積は O⃗P × (⃗aの x成分)と計算する事ができる。

~a

~b

O

P

~a

~b
~b + ~a

~b + ~a

図 19 行列 Aの２つの列ベクトルが作る平行四辺形

実際に O⃗P を計算すると

O⃗P = b⃗+ βa⃗ =

(
b
d

)
+ β

(
a
c

)
=

(
b+ βa
d+ βc

)
図 32の (c)の状態とは、この O⃗P の x座標の値がゼロになるという事なので、

b+ βa = 0 つまり β = − b

a

つまり

O⃗P =

(
0

d− bc

a

)
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求める面積は、O⃗P の y 座標と a⃗の x座標の積なので

Aの列ベクトルの作る面積 =

(
d− bc

a

)
× a = ad− bc
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4.2 行列式は拡大率である
行列式は拡大率� �
行列式 |A|は、行列 Aによる線形変換の拡大率である。� �

行列 Aによって線形変換をするという考え方をする、34ページのように座標系が変換されると考える事がで
きる。




































































































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-2

-1

 0
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-7 -6 -5 -4 -3 -2 -1  0  1  2  3  4  5  6  7

図 20 線形変換による空間の変形の様子（34ページ参照）

この時、ある図形がどのように変化するかを示したのが図 21である。

図 21 線形変換によって三角形がどのように変換されるか

このように『変換された図形は、元の図形の何倍になっているか？』を示すのが行列式である。2次の行列
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の場合で示そう。まず、以下のようにベクトル xを座標ベクトルで表しておく。(
x1

x2

)
= x1

(
1
0

)
+ x2

(
0
1

)
(4.2)

このベクトル xを行列 Aによって変換した結果が y になっている、つまり以下のように y = Axとしよう。(
y1
y2

)
=

(
a11 a12
a21 a22

)(
x1

x2

)
この式は以下のように、行列 Aの列ベクトルで表現することができる。(

y1
y2

)
= x1

(
a11
a21

)
+ x2

(
a12
a22

)
(4.3)

この式 4.2と 4.3を比較してみると、 (
1
0

)
⇒

(
a11
a21

)
(

0
1

)
⇒

(
a12
a22

)
と座標変換されている事が判る。つまり、元の座標の単位ベクトルが、行列 Aの列ベクトルに変換されてい
る。元の単位ベクトル２つの面積は１である。なので、変換後の面積が何倍されたかは、まさに行列 Aの列
ベクトルが作る平行四辺形の面積倍である。
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4.3 行列式がゼロになる場合と負になる場合
行列式 Aは、Aの列ベクトルが作る平行多面体の体積であるが、正負の符号を持っている。これは面の表
裏にあたる概念である。

行列式の性質　その１� �
1. 行列 Aの列ベクトルがお互いに線形従属なら、行列 Aによる変換は空間をつぶすような変換であ
り、行列式 |A|はゼロ

2. 行列 Aによる座標変換によって座標軸の回転順番が変わるような変換ならば、|A|は負になる。� �
■行列式がゼロになる場合 　行列 Aの行列式が Aの列ベクトルが作る平行多面体の体積である事を考えれ
ば明白である。例えば、以下のように２つの列ベクトル a⃗, b⃗を考え、a⃗を反時計回りに回転していく事を考え
よう。

a⃗ =

 1

0

 b⃗ =

 cos π
4

sin π
4


回転角を θ とすると a⃗は以下のように表す事ができ、a⃗と b⃗とを列ベクトルとする行列 Aを考えると以下の
ようになる。

a⃗ =

cos θ

sin θ

 A =

cos θ cosπ
4

sin θ sin π
4


この時、行列式 |A|の値は公式 |A| = ad− bcより以下となる

|A| = cos θ sin
π

4
− sin θ cos

π

4

図 22は b⃗を固定して、a⃗を反時計回りに回転していった時の行列式 |A|の変化を表している。

~a

~b

~a

図 22 a⃗を回転した時の行列式の値の変化

この図をみても判るように、a⃗ と b⃗ が重なった時、つまり θ = π/4 = 45◦ の時と、a⃗ と b⃗ がちょうど反対
方向を向いた時、つまり θ = 3π/4 = 45◦ の時に、sin θ = cos θ =

√
2
2 となり、ちょうど行列式 |A|がゼロに
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なっている。これは行列 Aの２つの列ベクトルがお互いに直線関係にある時である。つまり、「線形従属」で
ある時である。そして、この場合の線形変換は全ての図形を一直線上につぶすような変換になる。

つまり、n×m行列 Aのm個の列ベクトルが線形従属なら、行列式 |A| = 0であり、この行列 Aによる線
形変換はm次元の図形をm次元以下につぶすような図形となる。

■行列式が負になる場合 　行列式が負になる場合とはどのような場合かを考えよう。図 23のように、b⃗は
固定しながら a⃗が反時計回りに回る事を考える。その時の a⃗と b⃗の反時計回りの順番を考えて、この 2つの
列ベクトルが、元々の基底ベクトル (e⃗1 e⃗2)と同じ順番になっている場合はプラス、逆順番の場合はマイナス
になる。

~a

~b

~e1

~e2

(~e1 ~e2) =

(

1 0
0 1

)

(~a ~b) =

(

a1 b1

a2 b2

)

図 23 行列式が負になる場合

何故、そうなるかについて補足しよう。行列式は２つの列ベクトル a⃗ と b⃗ が作る平行四辺形の面積であっ
た。そして、ベクトル a⃗と b⃗が作る平行四辺形の面積は、

|⃗a||⃗b| sin θ

で求められる。この角度 θ は、ベクトル a⃗とベクトル b⃗の為す角度であり、反時計回りがプラスである。ま
た、sin θは −π < θ < 0でマイナス、0 < θ < π でプラスである。なので、ベクトル a⃗がベクトル b⃗より反時
計回りに進んでいる場合は θ < 0であり、マイナスになる。
さらに図形的に捉えるなら、ベクトル a⃗と b⃗の関係を変えるという事は、図 24のように、３点 O,A,B の
関係を変えるという事である。この図の場合は、２つの変換によって面積は同じ値 5となるが、図の上と下の
変換では３点 OAB の作る平行四辺形の面の向きが逆であることを意味している。
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(
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1 2

)

(

1 3
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)

O

A

B
3 1

1 2

1 3

2 1

図 24 面の表裏を変えると行列式の符号が変わる
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4.4 ラプラス展開によって行列式を求める
ここでは最初にラプラス展開によって行列式を定義する。その後、50ページで述べるように置換による行
列式の定義を行う。

一般の行列式の算出方法� �
1. 一般に i行 j 列の行列 Aがあったとする。その時、行列式 |A|は以下のように計算できる。

|A| =
n∑

i=1

(−1)i+j aij |Mij | (4.4)

ここで、|Mij |は、i行と j 列を除いた小行列である。
2. 具体的な計算方法は、３次の行列式ならば、以下のようにする。これをラプラス展開（余因子展
開）という。

∣

∣

∣

∣

∣

∣

a b c

d e f

g h i

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

a b c

d e f

g h i

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

a b c

d e f

g h i

∣

∣

∣

∣

∣

∣

a b c

d e f

g h i

= a
e f

h i
− d

b c

h i
+ g

b c

e f

(−1)2 = 1 (−1)3 = - 1 (−1)4 = 1

3. 行列式のラプラス展開は、行について展開しても、列について展開しても同じである。� �
■小行列と余因子とは何か？ 　小行列、小行列式、余因子という用語は混同しがちだが、以下のように異な
るので注意。

用語 記号 意味 型
小行列 Mij 行列 A から i行と j 列を除いた行列 行列
小行列式 det(Mij) 上記小行列の行列式の値 スカラー
余因子 ãij (−1)i+j · det(Mij) スカラー

さて、図 25のように、n次正方行列 Aがあったしよう。この行列 Aの第 i行と第 j 列を削除した残りは
n− 1次の正方行列である。この残りの n− 1次の正方行列を、行列 Aの成分 aij の小行列Mij と呼び、その
小行列の行列式を小行列式と呼び |Mij |と書く。
さらに、この小行列式 |Mij |にプラス・マイナスの符号を付けたものを余因子といい、ãij で表す。余因子
を求める式は、符号 = (−1)i+j として以下のようになる。

ãij = (−1)i+j |Mij | (4.5)
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
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




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





a11 · · · a1n

.

.

.

.
.
.

.

.

.

an1 · · · ann







M22 =

図 25 行列 Aの小行列 |M22|

このプラス・マイナスの符号だけを取り出してみてみると、図 26のように、対角線上に”+”を持つ市松模様
を形成する。

=











+ − + · · ·

− + − · · ·

+ − + · · ·

...
...

. . .











(−1)i+j

図 26 各成分の余因子の符号

■ラプラス展開（余因子展開） 式 (4.4)は、行列式のラプラス展開（または余因子展開）と呼ばれるもので
ある（以下に式 (4.4)を再掲）。

|A| =
n∑

i=1

(−1)i+j aij |Mij |

具体的な計算を図 27のような３次の正方行列の場合で見てみよう。

∣

∣

∣

∣

∣

∣

a b c

d e f

g h i

∣

∣

∣

∣

∣

∣

∣

∣
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∣

∣
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d e f
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∣

∣

∣
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∣

∣

∣

∣

∣

∣

∣

∣

a b c

d e f

g h i

∣

∣

∣

∣

∣

∣

a b c

d e f

g h i

= a
e f

h i
− d

b c

h i
+ g

b c

e f

(−1)2 = 1 (−1)3 = - 1 (−1)4 = 1

図 27 ３次の行列式の算出方法

このように、行列 Aの特定の列ベクトルの要素に注目して、３次の行列式の計算を２次の行列式に展開し
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ていくことが出来る。*13

■行展開と列展開は同じ さらに、ラプラス展開においては、行について展開しても、列について展開しても
同じである。具体的に 3行 3列の行列についてみてみよう。まず、第１列についてラプラス展開したものが以
下である。 ∣∣∣∣∣∣

a b c
d e f
h i j

∣∣∣∣∣∣ = a

∣∣∣∣ e f
i j

∣∣∣∣− d

∣∣∣∣ b c
i j

∣∣∣∣+ h

∣∣∣∣ b c
e f

∣∣∣∣
= a(ej − if)− d(bj − ci) + h(bf − ec)

= aej + cdi+ bfh− afi− bdj − ceh

次に、同じ行列を第一行についてラプラス展開したものが以下である。∣∣∣∣∣∣
a b c
d e f
h i j

∣∣∣∣∣∣ = a

∣∣∣∣ e f
i j

∣∣∣∣− b

∣∣∣∣ d f
h j

∣∣∣∣+ c

∣∣∣∣ d e
h i

∣∣∣∣
= a(ej − if)− b(dj − fh) + c(di− eh)

= aej + bfh+ cdi− afi− bdj − ceh

この２つの式は全く同じ値であることが判る。つまり、行について展開しても、列について展開しても全く同
じである。また、以下のように行列 Aについての列展開と転置行列 At についての列展開は同じで事であり、
|A| = |At|であると言える。

*13 ちなみに２次の行列式も、以下のように余因子展開して求める事もできる。∣∣∣∣ a b
c d

∣∣∣∣ = a|d| − c|b| = ad− bc
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4.5 置換による行列式の定義
前節（47ページ）では、ラプラス展開によって行列式を導出した。これは再帰的な定義であった。つまり、

n 次正方行列に対して一つの行と列を取り除いた n − 1 次の正方行列の行列式を使って計算し、つづいてに
n− 2次の正方行列を求めて・・・というように再起的に計算する方法である。

ここでは、以下のように置換を用いて定義する。この 2つの定義は数学的には同じだが、置換による定義の
方が代数学的に自然で、理論的な道具として「群論」等へ発展できるような定義である。

定義 4.1. n次正方行列

Aij =


a11 a12 · · · a1j
a21 a22 · · · a2j
...

...
. . .

...
ai1 ai2 · · · aij


に対して

detA =
∑
σ∈Sn

sgn(σ) · a1,σ(1)a2,σ(2) · · · an,σ(n) (4.6)

で定まる値を行列 Aの行列式といい、|A|または detAで表す。

■Sn について 式 4.6 の σ ∈ Sn の Sn は n 次対称群（Symmetric Group of degree n）を意味する。これ
は、長さ nの順列（置換）すべての集合に、置換の合成を演算として導入した、数学的な構造（群）をもつ集
合である。

【参考】
群（group）という考え方は、一見抽象的だが、実は私たちの日常や自然界にも深く関わる「操作のルー
ルとその構造」を捉えた考え方である。群とは、「ある集合（ものの集まり）」と、「その上でできる操
作（演算）」があって、以下の 4つの条件を満たしているものである。

名前 内容 例（加法の場合）
閉包性 結果も必ずその中にある 2 + 3 = 5 ∈ Z
結合法則 括弧の位置は変えて OK (a+ b) + c = a+ (b+ c)

単位元 操作しても変わらないものがある a+ 0 = a

逆元 元に戻す操作ができる a+ (−a) = 0

ここでは「順番を入れ替える操作（置換）」を集合の要素とし、その要素間の「合成演算」として群を
定義しているa。

a 数学でいう「対称」とは、何かが変わらずに保たれているという不変性（invariance）の概念である。置換における対称
性とは、集合のサイズ（要素数）と、1対 1対応（全単射）という構造が保たれていることを指す。つまり、すべての要
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素がちょうど 1つの像を持ち、重複せずに 1対 1に対応するという構造を保ったまま順番だけが変わっている。このよう
な操作の全体が群の構造をなすため「対称群 (Symmetric group)」と呼ばれている

まず、2 次の対称群 (S2) について考えてみる。n 個の要素の並べ替えは n! 個あるので、2 次の場合は
2! = 2× 1 = 2であり以下の 2つ (

1 2
1 2

) (
1 2
2 1

)
1行目が元の数値で、2行目が置換した値になる。つまり 1番目の置換は置換をしないという事を意味してお
り、2番目の置換は、1を 2に置換 (1 7→ 2)し、2を 1に置換 (2 7→ 1)するという入れ替えになっている。

次に 3次の対称群 (S3)について考えてみる。順列の下図だけ置換は存在するので、3! = 3 × 2 × 1 = 6と
なり、以下のような 6つの置換が考えられる。

3つとも動かす場合は以下の 3つ(
1 2 3
1 2 3

)
そのまま

(
1 2 3
3 1 2

)
1 を右移動

(
1 2 3
2 3 1

)
さらに 1 を右移動

ひとつを固定する場合は以下の 3つ(
1 2 3
1 3 2

)
1 固定

(
1 2 3
3 2 1

)
2 固定

(
1 2 3
2 1 3

)
3 固定

■ 符号 sgnについて
次に sgn(σ)についてみてみる。後で述べるように置換は奇置換と偶置換に分かれる。そして、σ が偶置換
の場合は sgn(σ) = +1で奇置換の場合は sgn(σ) = −1となる。

定義 4.2. 　置換 σ の符号 sgnを以下のように定義する。

　 sgn(σ) =

{
+ 1 σ が偶置換のとき
− 1 σ が奇置換のとき (4.7)

偶置換と奇置換を説明するために互換について説明する。互換とは、2つの要素を交換するだけの置換の事
であり、i と j を交換する互換を (i, j) と書く。また、置換は互換（2つの要素の交換）の積（繰り返し）よっ
て表す事ができる。そして、どんな置換も互換（2つのものの交換）を何回か行うことで実現できる。すなわ
ち任意の置換はいくつかの互換の積で表現できる。

例えば

σ =

(
1 2 3 4 5
2 3 5 4 1

)
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は図 28のように、「1と 2を交換」「1と 3を交換」「1と 5を交換」という互換を順番にかけると実現できる
ので、 σ = (1, 5)(1, 3)(1, 2) と書くことが出来る。

図 28 置換を互換の積で表す

この時、ある置換がどのような互換の積で表されるかについては一通りに決まるわけではない。しかし、与
えられた置換を、互換の積として表す時、使われる互換の個数が奇数になるか偶数になるかは、与えられた近
いによって必ずどちらか一方に決まり、それは互換の積の表し方には依存しない事が知られている。
つまり、式 4.7の「偶置換」とは、偶数回の互換の積で表される置換で、「奇置換」とは奇数回の積で表され
る置換である。

先ほどと同じように、3次の対称群の置換（ 集合 {1, 2, 3} 上の置換 S3）について考えてみる。

σ1 =

(
1 2 3
1 2 3

)
0 回なので偶置換

σ2 =

(
1 2 3
3 1 2

)
=(1 3)(2 1) 偶置換

σ3 =

(
1 2 3
2 3 1

)
=(1 2)(2 3) 偶置換

σ4 =

(
1 2 3
3 2 1

)
=(2 3) 奇置換

σ5 =

(
1 2 3
1 3 2

)
=(2 3) 奇置換

σ6 =

(
1 2 3
2 1 3

)
=(1 2) 奇置換

上段の 2個目の σ2 =

(
1 2 3

3 1 2

)
について補足しておくと、

最初の互換 (1 3)

(
1 2 3
1 2 3

)
=

(
1 2 3
3 2 1

)
、さらにもう一回で、(2 1)

(
1 2 3
3 2 1

)
=

(
1 2 3
3 1 2

)
となる。

■行列式を求める
以下の公式 4.6

detA =
∑
σ∈Sn

sgn(σ) · a1,σ(1)a2,σ(2) · · · an,σ(n)

を用いて、以下の２次の正方行列 Aの行列式を求めてみよう。

A =

(
a11 a12
a21 a22

)
2次の対称群なので (σ ∈ S2)で、n個の要素の並べ替えは以下の２つ（2! = 2× 1 = 2）

σ1 =

(
1 2
1 2

)
, σ2 =

(
1 2
2 1

)
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公式 4.6の∑記号を展開して書き下すと
detA = sgn(σ1) · a1,σ1(1)a2,σ1(2) + sgn(σ2) · a1,σ2(1)a2,σ2(2)

この記号 a1,σ1(1) の σ1(1)は、置換 σ1 の 1の行き先である。つまり今の場合なら以下のようになる。

σ1(1) = 1 σ1(2) = 2 σ2(1) = 2 σ2(2) = 1

さらに σ1 が偶置換、σ2 が奇置換なので

sgn(σ1) = 1 sgn(σ2) = −1

これらを代入すると行列式は

detA = 1 · a11a22 +−1 · a12a21
= a11a22 − a12a21

結果は、以下の二次正方行列の公式 4.1のとおりになる。

A =

(
a b
c d

)
の行列式は detA = |A| = ad− bc

次に、以下の 3次の正方行列 Aの行列式を求めてみよう。

A =

a11 a12 a13
a21 a22 a23
a31 a32 a33


これにはよく知られたサラスの公式があり、3次の正方行列の行列式は以下のようになる。

|A| = a11a22a33 + a21a32a13 + a31a23a12 − a13a22a31 − a23a32a11 − a33a21a12

④
⑤
⑥

①
②
③

図 29 サラスの公式

置換による行列式の定義式 4.6による数式展開が、実際に上記サラスの公式と同じになる事を確かめよう。
置換による行列式の定義は式 4.6で示したように以下となる。

detA =
∑
σ∈Sn

sgn(σ) · a1,σ(1)a2,σ(2) · · · an,σ(n)

σ ∈ Sn に含まれる σ は 6個（σ1, σ2, σ3, σ4, σ5, σ6)なのでこれを代入して

|A| = sgn(σ1) · a1,σ1(1)a2,σ1(2)a3,σ1(3) + sgn(σ2) · a1,σ2(1)a2,σ2(2)a3,σ2(3) + sgn(σ3) · a1,σ3(1)a2,σ3(2)a3,σ3(3)

+ sgn(σ4) · a1,σ4(1)a2,σ4(2)a3,σ4(3) + sgn(σ5) · a1,σ5(1)a2,σ5(2)a3,σ5(3) + sgn(σ6) · a1,σ6(1)a2,σ6(2)a3,σ6(3)
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ここで σ1(x) は置換 σ1 の x が何に置換されているかを示す。たとえば σ2 =

(
1 2 3

3 1 2

)
なら σ2(1) =

3, σ2(2) = 1, σ2(3) = 2となる。また、sgn(σx)は、その σx が偶置換なら +で奇置換なら −となる。これ
らを代入すると

|A| =+ a1,σ1(1)a2,σ1(2)a3,σ1(3) + a1,σ2(1)a2,σ2(2)a3,σ2(3) + a1,σ3(1)a2,σ3(2)a3,σ3(3)

− a1,σ4(1)a2,σ4(2)a3,σ4(3) − a1,σ5(1)a2,σ5(2)a3,σ5(3) − a1,σ6(1)a2,σ6(2)a3,σ6(3)

=+ a11a22a33 + a13a21a32 + a12a23a31

− a13a22a31 − a11a23a32 − a12a21a33

となりサラスの公式と同じになっているのが判る。
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4.6 余因子行列と逆行列
余因子行列と逆行列� �
n次正方行列 Aの余因子行列を Ãとすると以下が成立する

AÃ = ÃA = |A|I (4.8)

また、この事から行列 Aの逆行列を以下のように表す事ができる。

A−1 =
1

|A|
Ã (4.9)

そしてこの式から、n次正方行列が逆行列を持つ（正則行列である）ための必要十分条件は、|A| 6= 0で
ある事がわかる。� �

■余因子行列とは何か まずは余因子行列という言葉の定義から

定義 4.3. n次正方行列 Aに対して、(i, j)成分 aij の余因子 ãij を成分とする行列

Ã =


ã11 ã21 · · · ãn1
ã12 ã22 · · · ãn2
...

...
...

...
ã1n ã2n · · · ãnn


を Aの余因子行列または随伴行列 (adjoint matrix)という。

少々複雑だが、余因子行列をどうやって作るかをみておこう。まず、下図のように、n次正方行列 A = (aij)

の行列 Aの第 i行と第 j 列を削除した残りの n− 1次の小行列Mij をつくる。











a11 a12 · · · a1n

a21 a22 · · · a2n

.

.

.

.

.

.

.
.
.

.

.

.

an1 an2 · · · ann

















a11 · · · a1n

.

.

.

.
.
.

.

.

.

an1 · · · ann







M22 =

その行列式をとった小行列式 |Mij |にプラス・マイナスの符号を付けたものが余因子 ãij である。余因子を具
体的に式で表すと

ãij = (−1)i+j |Mij |

である。そして、この余因子 ãij を成分とする行列
ã11 ã12 · · · ã1n
ã21 ã22 · · · ã2n
...

...
...

...
ãn1 ãn2 · · · ãnn


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をつくり、その行列を転置した行列

Ã =


ã11 ã21 · · · ãn1
ã12 ã22 · · · ãn2
...

...
...

...
ã1n ã2n · · · ãnn


を Aの余因子行列という。

定理 4.1. n次正方行列 Aの余因子行列を Ãとすると、次の式が成り立つ。

AÃ = ÃA =


|A| 0 · · · 0
0 |A| · · · 0
...

...
...

...
0 0 · · · |A|

 = |A|I

■AÃ = |A|I の確認 実際に積 AÃを展開して AÃ = |A|I を確認してみよう。

• 対角成分が |A|になることの確認
具体的に i = j = 2の時の様子を示したのが図 30である。図 30のように、AÃの i行 i列の対角成分
は、行列 Aを i行についてラプラス展開したものと同じであり、|A|である。











ã11 ã21 · · · ãn1

ã12 ã22 · · · ãn2

.

.

.
.
.
.

.

.

.
.
.
.

ã1n ã2n · · · ãnn





















a11 a12 · · · a1n

a21 a22 · · · a2n

.

.

.
.
.
.

.

.

.
.
.
.

an1 an2 · · · ann











=

a21 a22 · · · a2n











a11 a12 · · · a1n

a21 a22 · · · a2n

.

.

.
.
.
.

.

.

.
.
.
.

an1 an2 · · · ann











+











a11 a12 · · · a1n

a21 a22 · · · a2n

.

.

.
.
.
.

.

.

.
.
.
.

an1 an2 · · · ann











+ +











a11 a12 · · · a1n

a21 a22 · · · a2n

.

.

.
.
.
.

.

.

.
.
.
.

an1 an2 · · · ann











ã21 ã22 ã2n= =

図 30 AÃの (2, 2)成分を展開すると

• 　非対角成分がゼロになる事の確認
具体的に i = 1, j = 2の時の様子を示したのが、図 31の点線より上である。
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









ã11 ã21 · · · ãn1

ã12 ã22 · · · ãn2

.

.

.
.
.
.

.

.

.
.
.
.

ã1n ã2n · · · ãnn





















a11 a12 · · · a1n

a21 a22 · · · a2n

.

.

.
.
.
.

.

.

.
.
.
.

an1 an2 · · · ann











=

a11 a12 · · · a 1n











a11 a12 · · · a1n

a21 a22 · · · a2n

.

.

.
.
.
.

.

.

.
.
.
.

an1 an2 · · · ann











+











a11 a12 · · · a1n

a21 a22 · · · a2n

.

.

.
.
.
.

.

.

.
.
.
.

an1 an2 · · · ann











+ +











a11 a12 · · · a1n

a21 a22 · · · a2n

.

.

.
.
.
.

.

.

.
.
.
.

an1 an2 · · · ann











ã21 ã22 ã2n= =











a11 a12 · · · a1n

a11 a12 · · · a1n

.

.

.
.
.
.

.

.

.
.
.
.

an1 an2 · · · ann











a11 a12 · · · a 1n











a11 a12 · · · a1n

a11 a12 · · · a1n

.

.

.
.
.
.

.

.

.
.
.
.

an1 an2 · · · ann











+











a11 a12 · · · a1n

a11 a12 · · · a1n

.

.

.
.
.
.

.

.

.
.
.
.

an1 an2 · · · ann











+ +











a11 a12 · · · a1n

a11 a12 · · · a1n

.

.

.
.
.
.

.

.

.
.
.
.

an1 an2 · · · ann











図 31 AÃの (1, 2)成分を展開すると

図 31 の点線より上の展開の様子を見てみると、２行目は全く使われていない。そこで以下のように、
行列 Aから２行目を抜いて、代わりに１行目を複製して２行目に挿入した行列 A′ を作ると、

A′ =


a11 a12 · · · a1n
a11 a12 · · · a1n
...

...
...

...
an1 an2 · · · ann


図 31の点線より下のように、元々の AÃの (1, 2)成分を展開したものは、行列 A′ の２行目についてラ
プラス展開したものと同じである事がわかる。いっぽうで、この行列 A′ は同じ行ベクトルを２つ持っ
ているので線形従属である。そして、44ページのように、行列 Aが線形従属なら、その行列式 |A|は
ゼロである。なので、AÃの非対角成分はゼロになる。

以上の事から、以下の式が成り立つ事が判る。

AÃ =


|A| 0 · · · 0
0 |A| · · · 0
...

...
...

...
0 0 · · · |A|

 = |A|I
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定理 4.2. 正則行列 Aの逆行列は
A−1 =

1

|A|
Ã

■余因子行列と逆行列 この余因子行列の積から逆行列が求められる。
AÃ = |A|I なので

A · 1

|A|
Ã = I

かけて単位行列 I になるものが逆行列なので、

A−1 =
1

|A|
Ã

このことからも、

n次正方行列が逆行列を持つ（正則行列である）ための必要十分条件は、|A| 6= 0である事である。

ことが分かる。
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4.7 行列式の性質
行列式の重要な性質� �

1. A、B を n次の正方行列とするとき
|AB| = |A||B| (4.10)

2. 行列 Aの逆行列 A−1 が存在するならば

|A−1| = 1

|A|
(4.11)

3. 転置行列の行列式は元の行列の行列式に等しい

|At| = |A| (4.12)

4. 対角行列の行列式は、対角成分のかけ算で計算できる∣∣∣∣∣∣∣
a1

. . .

an

∣∣∣∣∣∣∣ = a1 a2 · · · an (4.13)

5. 上三角行列の行列式も、対角成分のかけ算で計算できる∣∣∣∣∣∣∣
a11 · · · a1n

. . .
...

0 ann

∣∣∣∣∣∣∣ = a11 a22 · · · ann (4.14)

6. ある列（行）の定数倍を別の列（行）に加えても行列式の値は変わらない� �
上記のような幾つかの性質は、行列式が線形写像の拡大率であるという事を考えれば、以下のように証明は
簡単である。

■積の行列式 　 |AB|は、行列 AB による写像であり、行列 B による写像と行列 Aによる写像の合成であ
る。なので、拡大率も２つ写像による拡大率 |A|と |B|の積である*14。

■逆行列の行列式 　行列 Aによる写像で体積が |A|倍されるなら、その逆写像では体積が 1/|A|になるの
は至極当然のことであるが、上の積の性質を使うと以下のように簡単に示せる。まず逆行列なので、

AA−1 = I

この両辺の行列式を考えると
|AA−1| = |A||A−1| = 1

なので
|A−1| = 1

|A|

*14 行列 AB による写像は、まず行列 B による写像を行い、ついで行列 A による写像を行ったものであるが、式 (3.6) の逆行列
(AB)−1 = B−1A−1 のような積とちがって、|AB|は |A|も |B|もスカラーなのでかける順番はどちらでも良い。
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■対角行列の行列式 　 28ページのように、対角行列は各軸を対角成分倍する写像である。なので、対角行
列による写像の拡大率が、それぞれの成分の積、a1 a2 · · · an となるのは当然である。

■ある列の定数倍を別の列に加えても変わらない 　これは一見複雑であるが、行列式とは「列ベクトルが作
る超平面の体積である」事を利用すれば簡単に判る。
具体的に、２次の正方行列で考えてみよう。以下のように行列 Aの２つの列ベクトル a⃗と b⃗が作る平行四
辺形の面積を求めてみよう。

A =

(
a b
c d

)
a⃗ =

(
a
c

)
b⃗ =

(
b
d

)

~a

~b

O

P

~a

~b
~b + ~a

~b + ~a

図 32 行列 Aの２つの列ベクトルが作る平行四辺形

求める平行四辺形の面積は、図 32の (a)の影の部分である。この面積は図 32の (b)や (c)のようにベクト
ル a⃗に平行にズラしても面積は変わらない。
つまり ∣∣∣∣ a b

c d

∣∣∣∣ = ∣∣∣∣ a b+ αa
c d+ αc

∣∣∣∣
実際に計算すると ∣∣∣∣ a b+ αa

c d+ αc

∣∣∣∣ = (ad+ αac)− (bc+ αac) = ad− bc

となり同じである。つまり、

ある列の定数倍を別の列に加えても、行列式は変わらない。

ついで、幾つかの性質は行列式のラプラス展開（余因子展開）を利用して確認をしよう。

■転置行列の行列式 　転置行列の行列式は元の行列式そのままであるという事を確認しよう。
49ページで述べたように、行列式をラプラス展開するさいに、行について展開しても、列について展開し
ても全く同じである。一方、以下のように行列 Aについての列展開と転置行列 At についての列展開は同じで
事であり、|A| = |At|であると言える。

|A| =

∣∣∣∣∣∣
a b c
d e f
h i j

∣∣∣∣∣∣ |At| =

∣∣∣∣∣∣
a d h
b e i
c f j

∣∣∣∣∣∣
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行列式は、行と列の役割をいっせいに入れ替えても成立する

■三角行列の行列式 　これもラプラス展開すれば簡単に確認できる。
3次の正方行列で確認してみると、∣∣∣∣∣∣

a b c
0 e f
0 0 j

∣∣∣∣∣∣ = a

∣∣∣∣ e f
0 j

∣∣∣∣− 0

∣∣∣∣ b c
0 j

∣∣∣∣+ 0

∣∣∣∣ b c
e f

∣∣∣∣
= a(ej − 0f) = aej

というように、一列目の２番目の要素以降がゼロなので、結局２項目以降が全て消えていって結局、対角成分
の積になる。
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4.8 行列式の線形性と交代性
行列式の線形性と交代性� �

1. 行列式の線形性：定数倍と和に関しての性質

| αu⃗, v⃗, w⃗ | = α| u⃗, v⃗, w⃗ | (4.15)

| u⃗+ α⃗, v⃗, w⃗ | = | u⃗, v⃗, w⃗ |+ | α⃗, v⃗, w⃗ | (4.16)

2. 行列式の交代性：列を入れ替えた回数が奇数回の時は符号が変わり、偶数回の時は変わらない

| u⃗, v⃗, w⃗ | = −| v⃗, u⃗, w⃗ | (4.17)� �
4.8.1 行列式の線形性
行列式を列ベクトルに対して定義される関数を考える。例えば、3行 3列の正方行列 Aを考え、それぞれの
列ベクトルを以下のように考える。

u⃗ =

 a11
a12
a13

 v⃗ =

 a21
a22
a23

 w⃗ =

 a31
a32
a33


この 3つのベクトルを使って行列式を以下のように表記する事にする。

|A| = | u⃗, v⃗, w⃗ |

■行列のある列ベクトルを定数倍した場合 　実際に、ある列ベクトルを定数倍した場合の余因子展開をすれ
ば確認できる。3次の行列 Aについて

| αu⃗, v⃗, w⃗ | =

∣∣∣∣∣∣
αa11 a12 a13
αa21 a22 a23
αa31 a32 a33

∣∣∣∣∣∣
= αa11

∣∣∣∣ a22 a23
a32 a33

∣∣∣∣− αa21

∣∣∣∣ a12 a13
a32 a33

∣∣∣∣+ αa31

∣∣∣∣ a12 a13
a22 a23

∣∣∣∣
= α| u⃗, v⃗, w⃗ |

ここでは３次の正方行列についてみたが、そもそも行列式は、その行列の列ベクトルが作る平行超多面体の体
積である。なので、３次に限らず一般に、どれかの列ベクトルを定数倍すると、体積も定数倍されるのは納得
できる。簡単にするために２次の正方行列について | αu⃗, v⃗ |の様子を図示したのが図 33である。

■行列のある行に別のベクトルを足した場合 これも余因子展開すれば確認できる。
まず別のベクトルを

α⃗ =

 α1

α2

α3


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~u ~v

~u

~v

~v

~u ~v

図 33 列ベクトルの定数倍によって面積がどう変わるか

とした場合

| u⃗+ α⃗, v⃗, w⃗ | =

∣∣∣∣∣∣
a11 + α1 a12 a13
a21 + α2 a22 a23
a31 + α3 a32 a33

∣∣∣∣∣∣
= (a11 + α1)

∣∣∣∣ a22 a23
a32 a33

∣∣∣∣− (a21 + α2)

∣∣∣∣ a12 a13
a32 a33

∣∣∣∣+ (a31 + α3)

∣∣∣∣ a12 a13
a22 a23

∣∣∣∣
= | u⃗, v⃗, w⃗ |+ | α⃗, v⃗, w⃗ |

これも、行列式が列ベクトルが作る平行超多面体の体積であることを考えれば理解できる。簡単のため２次元
の場合を考えてみよう。図 34のように、| u⃗, v⃗+ w⃗ |で作られる面積は、平行四辺形の上辺を移動するだけで
面積は変わらないので、元のベクトルで作られる面積 | u⃗, v⃗ |と新しいベクトルで作られる体積 | u⃗, w⃗ |の和
である。

~u

~v

~w

~u ~v~u ~v ~w ~u ~w

~v ~w

図 34 列ベクトルに別のベクトルを足した場合に面積はどう変わるか

4.8.2 行列式の交代性
これも余因子展開すれば用意に納得できる。まず元の行列式 |A|を第２列について余因子展開すると、

| u⃗, v⃗, w⃗ | =

∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣
= −a12

∣∣∣∣ a21 a23
a31 a33

∣∣∣∣+ a22

∣∣∣∣ a11 a13
a31 a33

∣∣∣∣− a32

∣∣∣∣ a11 a13
a21 a23

∣∣∣∣
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それに対して１列と２列を入れ替えた場合、第一列について余因子展開すると、

| v⃗, u⃗, w⃗ | =

∣∣∣∣∣∣
a12 a11 a13
a22 a21 a23
a32 a31 a33

∣∣∣∣∣∣
= a12

∣∣∣∣ a21 a23
a31 a33

∣∣∣∣− a22

∣∣∣∣ a11 a13
a31 a33

∣∣∣∣+ a32

∣∣∣∣ a11 a13
a21 a23

∣∣∣∣
この２つの式を比べれば

| u⃗, v⃗, w⃗ | = −| v⃗, u⃗, w⃗ |

である事が判る。このように一回の入れ替えで符号が逆転する。確かに余因子展開すればそうなるのだが、も
う少し何故そうなるかを考えてみよう。元々行列式を余因子展開すると、47ページの式 (4.4)のように

|A| =
n∑

i=1

(−1)i+j aij |Mij |

というように展開される。ここで、先のように２つの列ベクトル i列と j 列を入れ替える事を考えよう。交換
する前に第 j 列によって余因子展開しておいたものと、交換してから第 i列による余因子展開をしたものを比
較すると、第 aij も |Mij |も変わらない。変わるのは符号だけである。では、符号はどのように変化するだろ
うか。例えば 3次の正方行列 Aにおいて、1列と 2列を入れ替えるとしよう。まず入れ替える前に第 2列目
で展開した展開式の符号は

i = 1, j = 2 ⇒ − i = 2, j = 2 ⇒ + i = 3, j = 2 ⇒ −

となる。それに対して、1列と 2列を入れ替えた後に第 1列目で展開した展開式の符号は

i = 1, j = 1 ⇒ + i = 2, j = 1 ⇒ − i = 3, j = 1 ⇒ +

とうように、ちょうどプラス・マイナスの符号が反対になる。なので１回の入れ替えで符号が逆転し、さらに
もう一度入れ替えると元に戻る。つまり、列を入れ替えた回数が奇数回の時は符号が変わり、偶数回の時は変
わらない。

4.9 行列式と線形独立の関係
線形独立についての色んな条件� �
以下の３つの条件は、行列 Aの各列の要素を成分とする n本の列ベクトル a⃗1, a⃗2, · · · , a⃗n が線形独立で
ある事と同値であり同じ条件を示している。

1. 列ベクトル a⃗1, a⃗2, · · · , a⃗n が作る n次元平行多面体の体積がゼロでない事
2. 行列 Aの行列式がゼロでない事、つまり、|A| 6= 0

3. 行列 Aが正則行列である。つまり逆行列 A−1 が存在する事。� �
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5 連立一次方程式とランク
5.1 連立一次方程式の解の存在と一意性
連立一次方程式の解の存在と一意性� �
連立一次方程式の解が存在し、しかもその解が一意である為には、以下の２つの条件が必要十分条件であ
る。これは、行列 Aの表す写像が全射であり単射である事、つまり正則行列である事を意味する。

1. 写像が単射（１対１対応）である。⇔ KarAが原点 0のみである。
2. 写像が全射である。⇔　 ImAが値域（写像先の全空間）に一致する。� �

■解の存在と一意性とは 最も簡単な一次方程式、ax = bを考えてみよう。

1. a 6= 0の時は、以下のように aで割って解が一意に求まる。⇒【一意】

x =
b

a

2. a = 0の時は、以下の２つのケースに別れる
（a）b = 0の場合は、0x = 0なので方程式の解は無数にある。⇒【不定】
（b）b 6= 0の場合は、0x = bなので方程式の解は存在しない。⇒【不能】

■行列方程式 Ax = bの解の存在と一意性 　 Ax = bという行列方程式の場合も同様な事がおこる。行列 A

が表す写像の特徴によって方程式の解の存在性と一意性は変わる。

V
W

V W

V
W

V W

図 35 線形写像の特徴からみた解の存在性と一意性

図 35のように、写像が全射であれば「解は必ず存在」し、さらに単射であれば「解は一意」に求める事が
できる。これは、その写像を表す行列 Aの構造を調べれば判る。
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5.2 線形写像の核と像
Ax = bの解の存在と一意性は、行列 Aの構造を調べれば判る。そこで行列 Aの構造を調べる事にするの
だが、その前準備としてに、まずは「核と像」という用語を定義しよう。

線形写像の核と像とは� �
A を、ベクトル空間 V から W への線形写像とする。このとき Ax によって移った先の空間を像
(Image)ImAと呼び、移った先が 0となる元の集合 Ax = 0を核 (Kernel)と呼ぶ。つまり

ImA = {y|y = Ax ただし、x ∈ V }　 KerA = {x|Ax = 0}

V W

0

(Kernel)

KerA

Ax

Ax

V W

(Image)

ImA

さらに、この２つの空間、像と核はともに空間 V と空間W の線形部分空間となっている。� �
■線形部分空間とは 　線形部分空間とは以下のようなものである。

定義 5.1. 線形部分空間の定義
V をベクトル空間とする。その V の部分集合 S が次の性質を持つとき、S を V の部分空間という。

1. x, y ∈ S ⇒ x+ y ∈ S

2. αが実数、x ∈ S ⇒ αx ∈ S

一般には、部分集合の要素の加算とスカラー積の結果が、またその部分集合の中の要素になっている事は保
証されない。部分となる集合が加算とスカラー積について閉じている場合は特殊な場合であり、線形空間の部
分がまた線形空間であることを示している。

■KerAは、V の線形部分空間である 　KerAが、線形部分空間である事を示そう。

1. x1 + x2 ∈ KerA

x1, x2 ∈ KerA ならば、Ax1 = 0 であり、Ax2 = 0。また行列の演算規則から、A(x1 + x2) =

Ax1 +Ax2 = 0なので、x1 + x2 ∈ KerA

2. αx ∈ KerA

R を実数の集合として、α ∈ R かつ、x ∈ V とすると、Ax = 0 なので、行列の演算規則から、
αAx = Aαx = 0なので、αx ∈ KerA
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■ImAは、W の線形部分空間である 　 ImAが、線形部分空間である事を示そう。

1. y1 + y2 ∈ ImA

y1, y2 ∈ ImA ならば、対応する元ベクトル x1, x2 が存在し、Ax1 = y1 であり、Ax2 = y2。なので
y1 + y2 = Ax1 +Ax2 = A(x1 + x2)。つまり y1 + y2 もまた ImAに属するので、y1 + y2 ∈ ImA

2. αy ∈ ImA

Rを実数の集合として、α ∈ Rかつ、y ∈ ImAとすると、y に対応するベクトル xが存在し、y = Ax

と表せる。なので、αy = Aαx。つまり αy もまた ImAに属するので、αy ∈ ImA

67



5.3 全射と単射を行列 Aの像と核で表現する
この像と核を用いて、「全射」「単射」を表現してみると以下のようになる。

行列 Aの像と核からみた解の存在性と一意性� �
m× n行列 Aによる写像について、

• ImA = mならば「全射」、ImA < mならば「全射でない」。
• KerA = 0ならば「単射」、Ker 6= 0ならば「単射でない」。

なので、行列 Aの像と核を用いると図 35でしめした、線形写像の特徴からみた解の存在性と一意性は以
下のようになる。

V
W

V W

V
W

V W

ImA = mImA < m

KerA = 0

KerA 6= 0

� �
5.3.1 行列 Aの列空間の次元と写像の全射の関係
まずは、「全射」と像の関係を確認しよう。結論から言うと上記のように、行列 Aによる写像で移された先

（像）がm次元ならば「全射」になり、m次元より小さいなら「全射でない」。また、移された先（像）の次元
は、行列 Aの線形独立な列ベクトルの数を調べれば良い。その事を確認いしていこう。

■ImA = mならば「全射」、ImA < mなら「全射でない」 一般に、m × n行列 Aによる写像は、図 36

のように、n次元ベクトル空間 V から、m次元ベクトル空間W への写像となる。なので、もし値域 (Image)

がm次元なら、その写像は「全射」である。

a11 a12 · · · a1n

a21 a22 · · · a2n

.

.

.

.

.

.

.
.
.

.

.

.

a 1 a 2 · · · a

x1

x2

.

.

.

xn

=

y1

y2

.

.

.

y

m × n n m
V Wn m

Image

mnm
m

m

図 36 m× n行列による写像のイメージ
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しかし、写像された結果がm次元よりも小さい場合が存在する。例えば、具体的に

A =

(
0.8 −0.6
0.4 −0.3

)
によって元々の基底ベクトルがどのように変換されるかをみたのが図 37である。この場合、２次元ベクトル
を 2× 2行列で写像した結果が１次元になっている。つまり、W の空間自体は２次元だが、写像 Aによる値
域は１次元の空間につぶれている事になる。

(

1

0

)

(

0

1

)

(

0 8

0 4

)

(

−0 6

−0 3

)

y = Ax

図 37 ２次元平面を１次元直線に写す行列

■像の次元は、行列 Aの列空間の次元に一致する では、どのような場合につぶれるのだろうか。結論から
いうと、写像 Aの列ベクトル群の中にある線形独立なベクトルの本数がつぶれ具合を示している。図 37の例
でいうと、この行列 Aの列ベクトル２つは、いっけんすると２本だが、同じ (0.2 0.1)t というベクトルから
生成されており、

A =

(
0.8 −0.6
0.4 −0.3

)
=

(
0.2
0.1

)(
4 −3

)
というように、行列 A自体が１本の列ベクトルと定数、つまり１本の列ベクトルと１本の行ベクトルの積で
表現できる。こうした行列 Aによる写像は２次元平面を直線につぶすような写像である。
もう少し一般化しておこう。以下のようなm× n行列 Aによって、n次元ベクトル xをm次元ベクトル y

に写す写像を考えよう*15。 
a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn




x1

x2

...
xn


これを基底変換としてみると

1
0
...
0

⇒


a11
a21
...

an1




0
1
...
0

⇒


a12
a22
...

an2

 · · ·


0
0
...
1

⇒


a1n
a2n
...

ann


というように、元々の基底ベクトルを行列 Aの列ベクトルに変換している事に他ならない。先ほどの図 37の
例ならば (

1
0

)
⇒
(

0.8
0.4

)
= 4×

(
0.2
0.1

) (
0
1

)
⇒
(

−0.6
−0.3

)
= −3×

(
0.2
0.1

)
*15 このように写像で空間を変換するという考え方は 13ページを参照
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というように、元々は線形独立な２つの基底ベクトルで構成されていた２次元空間を、１つの基底ベクトルで
構成される１次元空間に変換している事になる。

V =

図 38 写像 Aの列ベクトルの構造 (dimA)によって像 (Image)の次元が異なる

つまり、図 38のように、写像 Aによって写像された値域 (Image)の空間の次元は、行列 Aの列空間の次
元、つまり列空間の中に幾つ線形独立なベクトルがあるかという事によって決定される。なので、m× n行列
Aによる写像が「全射」であるという事は、行列 Aの列空間の次元がm次元である事に他ならない。

5.3.2 行列 Aの核空間の次元と写像の単射の関係
ついで、行列 Aの核と「単射」の関係について確認しよう。結論からいうと、行列 Aの核がゼロならば「単
射」になり、ゼロでなければ「単射でない」。

定理 5.1. 行列 Aによる線形写像が単射であるための必要十分条件は、

KerA = {0}

まず全ての線形写像 y = Ax において x = 0 ならば、y = 0 は当然。なので、もし線形写像が単射であれ
ば、写像して y = 0となる元は 1つしかなく、それは x = 0である。つまり単射であれば KerA = {0}は当
然である。
なので、KerA = {0}の場合に、写像が単射になることを確認しよう。まず、図 39のように、もし写像に
よって同じ y になる写像の元が２つあったとする。つまり、y の２つの元を x1 と x2 とすると y = Ax1 であ
り、かつ y = Ax2 が成り立っていると仮定する。
この時、x1 − x2 の像は

A(x1 − x2) = Ax1 −Ax2 = y − y = 0

となり、元 (x1 − x2) は KerA の要素であり、(x1 − x2) ∈ KerA となる事が判る。なので、KerA = {0}
より

x1 − x2 = 0

つまり、x1 = x2 である。ということは、線形写像 Aによって同じ像 y になる元はだた 1つである事を意味
している。つまり、KerA = {0}ならば必ず単射である。
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y = Ax1

y = Ax2

x1

x2

y

図 39 KerA = 0ならその写像は単射である

5.3.3 単射であれば、空間の次元を変えない
線形写像が１対１であれば、線形独立なベクトルは移った先でも線形独立である。つまり、１対１写像は、

m次元ベクトル空間をm次元ベクトル空間に写し、次元を変えない事になる*16。

定理 5.2. 線形写像が１対１であれば任意の線形独立なベクトルは写った先でも線形独立である。また、そ
の逆も成り立つ。つまり、任意の線形独立なベクトルが線形写像により写された先でも線形独立であるなら
ばその写像は１対１である。

■１対１であれば任意の線形独立なベクトルは写った先でも線形独立 m × n 行列 A が、n 次元空間 V か
ら m 次元空間W への１体１の線形写像であるとする。この時 x1, x2, · · · , xn が線形独立であるにもかかわ
らず、それぞれの写像先である y1, y2, · · · , yn が線形従属であると仮定しよう。
y1, y2, · · · , yn が線形従属ならば、

d1y1 + d2y2 + · · ·+ dnyn = 0

となるゼロでない係数（d1 = d2 = · · · = dn = 0でない係数）が存在することになる。いまゼロでない係数を
yi とすると、その yi は

yi =
d1
di

y1 +
d2
di

y2 + · · ·+ dn
di

yn

というように、他のベクトルの線形結合で表されることになる。ここで、この写像は１対１なので、それぞれ
y1, y2, · · · , yn に対応する元ベクトル x1, x2, · · · , xn が存在するので、上の式は

cixi = c1x1 + c2x2 + · · ·+ cnxn

というように、xi がその他の x1, x2, · · · , xn のベクトルの線形結合で表すことができる事になる。これは、
元々の x1, x2, · · · , xn が線形独立であるという仮定に反する。なので、y1, y2, · · · , yn が線形従属ではない。

■任意の線形独立なベクトルが写された先でも線形独立であるならば１対１写像 KerA = 0ならば１対１写
像なので、任意の線形独立なベクトルが写された先でも線形独立であるならば KerA = 0である事を示せば
よい。

*16 これは、行列のランクにつながる重要な考え方である。
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Ax = 0となる xを、空間 V の線形独立な基底 e1, e2, · · · , en を用いて

x = x1e1 + x2e2 + · · ·+ xnen

と表すことができる。この両辺に行列 Aをかけると

Ax = A(x1e1 + x2e2 + · · ·+ xnen)

= x1Ae1 + x2Ae2 + · · ·+ xnAen

この式の左辺は、Ax = 0なので

x1Ae1 + x2Ae2 + · · ·+ xnAen = 0

この時、この写像は線形独立なベクトルが写された先でも線形独立なので、Ae1, Ae2, · · · , Aen も線形独立。
なので、上の式は x1 = x2 = · · · = xn = 0の時にしか成り立たない。つまり、x = 0しか成立しない。この
ように核空間が x = 0しか存在しない写像であり、この写像は KerA = 0。よって、この行列 Aによる写像
は必ず１対１写像である。
以上のように、線形写像が１対１であれば、元々の基底ベクトルは独立性を保ったまま写像される。なの
で、任意の m次元ベクトル空間は m次元ベクトル空間に写される。一方１対１でない場合には任意の m次
元ベクトル空間は n次元ベクトル空間（ただし n < m）に写される。
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5.4 ガウス・ジョルダン法で連立一次方程式を解く
では、実際に連立方程式を解いていく仮定をおってみよう。まずは、行列 Aが正則行列である、つまり全
射であり単射（１体１対応）である場合に限定して話を進める。
行列の基本変形� �
以下の３つか行列に関する基本変形である。これらは行に対しても列に対しても成立する。

1. 第 i行（列）を定数 c倍する
2. 第 i行（列）と第 j 行（列）を入れ替える
3. 第 j 行（列）を定数 c倍して第 i行（列）に加える（もとの第 j 行（列）はそのまま）� �

次のような連立方程式を考えよう。 
2x1 + 3x2 + 3x3 = 9

3x1 + 4x2 + 2x3 = 9

−2x1 − 2x2 + 3x3 = 2

これを行列で表すと  2 3 3
3 4 2
−2 −2 3

 x1

x2

x3

 =

 9
9
2


ここで連立方程式を解いていく過程を追いかけてみよう。ここで x = ( x1 x2 x3 )t は操作に関係ないので、
以下のような行列に対して操作していく事にする。 2 3 3 9

3 4 2 9
−2 −2 3 2


この形の行列を拡大係数行列と呼び、[A b]と表す。

−−−−−−−−−−−−→元の拡大係数行列
 2 3 3 9

3 4 2 9
−2 −2 3 2


−−−−−−−−−−→
(1/2)× 1行目

 1 3/2 3/2 9/2
3 4 2 9
−2 −2 3 2

−−−−−−−−−−−−−−−−→
(−3)× 1行目+ 2行目

 1 3/2 3/2 9/2
0 −1/2 −5/2 −9/2
−2 −2 3 2


−−−−−−−−−−−−−−−→
(2)× 1行目+ 3行目

 1 3/2 3/2 9/2
0 −1/2 −5/2 −9/2
0 1 6 11

−−−−−−−−−→
(−2)× 2行目

 1 3/2 3/2 9/2
0 1 5 9
0 1 6 11


−−−−−−−−−−−−−−−−→
(−1)× 2行目+ 3行目

 1 3/2 3/2 9/2
0 1 5 9
0 0 1 2

−−−−−−−−−−−−−−−−→
(−5)× 3行目+ 2行目

 1 3/2 3/2 9/2
0 1 0 −1
0 0 1 2


−−−−−−−−−−−−−−−−−−→
(−3/2)× 3行目+ 1行目

 1 3/2 0 3/2
0 1 0 −1
0 0 1 2

−−−−−−−−−−−−−−−−−−→
(−3/2)× 2行目+ 1行目

 1 0 0 3
0 1 0 −1
0 0 1 2


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これで、最終的な解 x = ( 3 − 1 2 )t が得られた。これは、対角成分を１にしつつ、最初に下三角部分をゼ
ロにしていき、次いで上三角部分をゼロにしていき、最終的に単位行列にするという手続きである。最初に下
三角部分をゼロにしていく過程を前進消去、上三角部分をゼロにしていく過程を後退消去という。

5.5 基本変形を施す行列
行列の基本変形を表す基本行列� �
以下のような行列を右からかけると列に、左からかけると行に対して基本変形を施す事ができる。

1. P (i; c)　：第 i行（列）を c倍（c 6= 0)する行列。単位行列の第 i番目の対角成分のみを cにした
行列。

P (2; c) =


1

c
. . .

1


2. Q(i; j)　：第 i行（列）と第 j 行（列）を入れ替える行列。単位行列の第 i列と第 j 列を入れ替え
た行列。

Q(1; 2) =


0 1
1 0

1
. . .


3. R(i; j; c)　：第 j 行（第 i列）を c倍して第 i行（第 j 列）に加える行列。単位行列の第 i行 j 列
を cにした行列。

R(1; 3; c) =


1 c

1
1

. . .


ただし、対象となる行列が正方行列でない場合は、基本行列を右からかける場合と左からかける場合で、
基本行列の次元が異なる。� �

5.5.1 基本行列を右からかけると列に、左からかけると行に作用する
具体的に以下のような行列 Aに、基本行列を左からと左からと、それぞれ適用させて確認しよう。

A =

 a11 a12 a13
a21 a22 a23
a31 a32 a33


■基本行列を右からかけて列に作用させる まずは右からかけて列に作用させてみよう。

第 3列を c倍する

AP (3; c) =

 a11 a12 a13
a21 a22 a23
a31 a32 a33

 1 0 0
0 1 0
0 0 c

 =

 a11 a12 c · a13
a21 a22 c · a23
a31 a32 c · a33


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第 1列と第 3列を入れ替える

AQ(1; 3) =

 a11 a12 a13
a21 a22 a23
a31 a32 a33

 0 0 1
0 1 0
1 0 0

 =

 a13 a12 a11
a23 a22 a21
a33 a32 a31


第 1列を c倍して第 3列に加える

AR(1; 3; c) =

 a11 a12 a13
a21 a22 a23
a31 a32 a33

 1 0 c
0 1 0
0 0 1

 =

 a13 a12 c · a11 + a13
a23 a22 c · a21 + a23
a33 a32 c · a31 + a33


■基本行列を左からかけて行に作用させる 同様に行列 Aに、左から基本行列を適用させて確認しよう。

第 3行を c倍する

P (3; c)A =

 1 0 0
0 1 0
0 0 c

 a11 a12 a13
a21 a22 a23
a31 a32 a33

 =

 a11 a12 a13
a21 a22 a23

c · a31 c · a32 c · a33


第 1行と第 3行を入れ替える

Q(1; 3)A =

 0 0 1
0 1 0
1 0 0

 a11 a12 a13
a21 a22 a23
a31 a32 a33

 =

 a31 a32 a33
a21 a22 a23
a11 a12 a13


第 3行を c倍して第 1行に加える

R(1; 3; c)A =

 1 0 c
0 1 0
0 0 1

 a11 a12 a13
a21 a22 a23
a31 a32 a33

 =

 a11 + c · a31 a12 + c · a32 a13 + c · a33
a21 a22 a23
a31 a32 a33


5.5.2 右からかける場合と左からでは次元は異なる
ただし、行列 Aが以下のように正方行列でない場合は、基本行列を右からかける場合と左からかける場合
で、施す基本行列の次元が異なる。

A =

 a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34


左からかける 第 3行を c倍して第 1行に加える 1 0 c

0 1 0
0 0 1

 a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34

 =

 a11 + ca31 a12 + ca32 a13 + ca33 a14 + ca34
a21 a22 a23 a24
a31 a32 a33 a34


右からかける 第 3列を c倍して第 1列に加える

 a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34




1 0 0 0
0 1 0 0
c 0 1 0
0 0 0 1

 =

 a11 + ca13 a12 a13 a14
a21 + ca23 a22 a23 a24
a31 + ca33 a32 a33 a34


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5.6 基本変形の性質
基本変形は正則行列である� �

• 基本変形は、正則行列であり必ず逆行列を持つ
• 基本変形を施しても、行空間・列空間の次元は変わらない。� �

5.6.1 基本変形は必ず逆行列を持つ
必ず逆行列を持つ事は、基本変形の作用を考えればあきらかであり、それぞれの基本行列の逆行列は以下の
ような行列である。

1. P (i; c)−1 　：第 i行（列）を c倍（c 6= 0)する行列の逆行列。P (i; c)は、単位行列の第 i番目の対角
成分を c倍したのだから、逆に 1

c
倍すれば逆行列になる。

P (2; c) =


1

1

c
. . .

1


2. Q(i; j)−1 　：第 i行（列）と第 j 行（列）を入れ替える行列の逆行列。交換なのでそのままの、単位行
列の第 i列と第 j 列を入れ替えた行列が逆行列になる。

Q(1; 2) =


0 1
1 0

1
. . .


3. R(i; j; c)−1 　：第 j 行（第 i列）を c倍して第 i行（第 j 列）に加える行列の逆行列。R(i; j; c)は、単
位行列の第 i行 j 列を cにした行列なので、逆に、第 i行 j 列を −cにすれば逆行列になる。

R(1; 3; c) =


1 −c

1
1

. . .


また、30ページの定理 3.1より、「正方行列において逆行列が存在するなら、その行列は正則行列（全射で
あり単射）」*17である。この基本行列は正方行列であり、かつ逆行列が存在するので、正則行列である。

5.6.2 基本変形によって空間の次元は変化しない
まず、空間 Vm から空間Wn への写像を表す、n×m行列 Aを図 40のように、行ベクトル及び列ベクトル
へ分割する。この時、a1, a2, · · · , an は行空間 Vm の要素であり、b1, b2, · · · , bm は列空間Wn の要素である。
基本変形は、この行空間の次元、つまり線形独立なベクトルの数を変えない。その事を確認しよう。いま図

41のような２次の正方行列があり、その２つの行ベクトルが線形独立であったとしよう。

*17 正方行列なら、n 次元ベクトルを n 次元ベクトルに写像する。さらに逆行列を持つなら、任意の像 wi に対してその元になる vi
が存在するので、全射であり単射である。

76













a11 a12 · · · a1m

a21 a22 · · · a2m

.

.

.

.

.

.

.
.
.

.

.

.

an1 an2 · · · anm











=











a1

a2

.

.

.

an











A

b1 b2 · · · bm











a11 a12 · · · a1m

a21 a22 · · · a2m

.

.

.

.

.

.

.
.
.

.

.

.











=A

an1 an2 · · · anm

図 40 行ベクトル・列ベクトルへの分割
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図 41 基本変形は線形独立なベクトルの数を変えない

この２つの線形独立なベクトルに、３つの基本変形（P,Q,R)を施したとしても、図 41のように線形従属、
つまり１直線上に並ぶような事はない。なぜなら、(1)定数倍 (P )は２つのベクトルの独立性を何ら変化させ
ないし、(2)交換 (Q)も座標軸を交換するだけなので独立性はそのまま保っている。そして最後の (3)定数倍
と和 (R)も元々の２つのベクトルが独立であれば、a1 ベクトル成分を残すので決して一直線上になる（つま
り線形従属になる）ことはない。この事は列ベクトルについても同様である。
つまり、いずれの変形をしても、元々線形独立ならば、写像された結果のベクトルも線形独立である。この
ように独立性を保った写像は、71ページの節でのべたように、単射であり、空間の次元数を変えない写像で
ある。
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5.7 ランク
ランクの意味と求め方� �
意味 　ランクは、行列を列ベクトル（または行ベクトル）の並びとしてみたとき、線形独立な列ベクト

ル（または行ベクトル）の最大個数を意味している。
求め方 　行列 Aのランクを求めるには、行列 Aに対して基本変形を施して得られる階段行列の行ベク

トルのうち、0でないものの個数を数えればよい。� �
5.7.1 ランクの定義

定義 5.2. ランクの定義
V、W をベクトル空間とし、線型写像 f : V → W が与えられたとき、f の像 Image f の次元を線型写像
f の階数（ランク）と呼び、rank f と表す。

写像 Aによって写像された値域 (Image)の空間の次元は、69ページのように、行列 Aの列空間の次元、つ
まり列空間の中に幾つ線形独立なベクトルがあるかという事によって決定される。なのでその列空間の中に幾
つの線形独立なベクトルがあるかを調べれば良い。
例えば以下のような行列を考えよう。

D =

 2 3
4 6
6 9

 E =

 1 1 3
2 3 7
3 5 11


この行列 D の第一列と第二列は、e = (1, 2, 3)

t という縦ベクトルの２倍と３倍であり、実質は１つのベクト
ルであり rank D = 1である。また行列 E の第三列は、２×（第一列）＋（第二列）となっており、実質は
e1 = (1, 2, 3)

t と e2 = (1, 3, 5)
t という２つの線形独立な縦ベクトルで構成されており rank E = 2である。

また以下の行列 F は、一見すると 3× 4行列だが、3× 2の行列 Gと 2× 4の行列 H の積で表される。

F =

 1 2 3 4
2 5 6 9
5 13 15 23

 =

 1 0
2 1
5 3

( 1 2 3 4
0 1 0 1

)
= GH

F

x y

H

x y

G

z

図 42 ボトルネック型の分解

つまり、図 42*18のように、行列 H で２次元空間に縮小写像して、それを行列 Gで３次元空間に拡大写像

*18 平岡和幸・堀玄 [4]　の P132の図から改編
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しているので、２次元の枠をでない。実際、F の第二列、第三列は、行列 Gの線形独立な２つの縦ベクトル
(1, 2, 5)

t と (0, 1, 3)
t の一次結合で表されるので、rank 2である。

5.7.2 ランクの求め方
先の行列 D や行列 E は、一見してすぐに線形独立な列ベクトルの数を見いだす事が可能である。しかし、
行列 F のように一見すると複雑な場合も存在する。そうした場合には基本変変形を用いて行列を見通し良く
変形してやればよい。具体的には、行列 Aに対して基本変形を施して得られる階段行列の行ベクトルのうち、
0でないものの個数を数えればよい。なぜならば、基本変形は、76ページの節 5.6で述べたように、線形独立
なベクトルは独立性を保ち、行空間・列空間の次元を変えないからである。
では次のような行列 Aのランクを求めてみよう。なお、前節で述べたように、基本変形を左からかけて行に
施しても、右からかけて列に施しても、空間の次元は変わらない。ここでは、左右からかけて変形していく。

A =

 1 2 3 4
2 5 6 9
5 13 15 23



−−−−−−−−−−−−−−−→
(1) − 2× 1行+ 2行

 1 2 3 4
0 1 0 1
5 13 15 23

−−−−−−−−−−−−−−−→
(2) − 5× 1行+ 3行

 1 2 3 4
0 1 0 1
0 3 0 3


−−−−−−−−−−−−−−−→
(3) − 3× 2行+ 3行

 1 2 3 4
0 1 0 1
0 0 0 0


−−−−−−−−−−−−−−−→
(4) − 2× 1列+ 2列

 1 0 3 4
0 1 0 1
0 0 0 0

−−−−−−−−−−−−−−−→
(5) − 3× 1列+ 3列

 1 0 0 4
0 1 0 1
0 0 0 0


−−−−−−−−−−−−−−−→
(6) − 4× 1列+ 4列

 1 0 0 0
0 1 0 1
0 0 0 0

−−−−−−−−−−−−−−−→
(7) − 1× 2列+ 4列

 1 0 0 0
0 1 0 0
0 0 0 0


(1)～(3)までは行について基本変形をし、(4)～(7)までは列について基本変形をほどこした。それによって、
一見複雑な行列 Aを 0と 1だけの見通しの良い行列に変換した。この最後の行列の要素が 0でないのは第一
行と第二行であり、この２つが線形独立な行である。なので、この行列は rank A = 2である。

5.7.3 なぜ基本変形で rank が求められるのか
なぜこうした基本変形でランクを求める事が出来るのかを考えてみる。まず、図 43のように、n×mの行
列 Aを行ベクトルに分割したとき、r 本が線形独立、n− r 本が線形従属であるとしよう。

■線形従属な行ベクトルの部分 このとき、ar+1～an までの n− r本の行ベクトルは、以下のように 1行～r

行までの r 本の線形独立なベクトルの一次結合で表すことができる。

ar+1 = c1a1 + c2a2 + · · ·+ cnan
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




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.
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.

.
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.

.

an1 an2 · · · anm









































a1

.

.

.

an

ar+1

.

.

.

an





















n−r

r

図 43 r 本が線形独立な行列 A

なので、これら n− r 本の行ベクトルは、基本変形によって必ず０になる*19。つまり

a11 a12 · · · a1m
...

...
. . .

...
ar1 ar2 · · · arm
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0


のように線形従属な行ベクトル部分は全て０になる。

■線形独立な行ベクトルの部分 　いっぽう、線形独立な行ベクトルの部分は対角要素が１で、左下の三角部
分が０の段階行列になる。具体的に r 本の線形独立な行部分のみを取り出してみると

−−−−−−−−−−−−−−−→
1行目を 1/a11倍して


1 a′12 · · · a′1n
a21 a22 · · · a2m
...

...
. . .

...
ar1 ar2 · · · arm

 ただし a′1i =
a1i
a11

−−−−−−−−−−−−−−−−−−−−−−−−−−→
1行目を− a21倍して２行目に足して


1 a′12 · · · a′1n
0 a′22 · · · a′2m
...

...
. . .

...
ar1 ar2 · · · arm

 ただし a′2i = a2i − a′1ia21

というように対角成分の下の要素をゼロにしていく。この結果できあがるのは
1 a12 · · · a1r · · · a1m
0 1 · · · a2r · · · a1m
...

...
. . .

... · · ·
...

0 0 · · · 1 · · · arm


というように、r 行までの対角要素が１で、対角要素の下の部分が０の段階行列である。

*19 何故なら、もともと基本変形は定数倍 ar+1 = car、定数倍と他のベクトルとの和 ar+1 = car+1 + ar であり、あるベクトルを
自分以外の他のベクトルの一次結合で表現していく事に他ならないからである。
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■行についての変形が終わった段階で このように行に関する変形が終了した段階で、これを先の線形従属な
部分と合わせると 

1 a12 · · · a1r · · · a1m
0 1 · · · a2r · · · a1m
...

...
. . .

... · · ·
...

0 0 · · · 1 · · · arm
0 0 · · · 0 · · · 0
...

... · · ·
... · · ·

...
0 0 · · · 0 · · · 0


のような行列になっている。あとは、r 列→ r − 1列→ · · · → 1列、というように列ベクトルに関する基本変
形を行い、右方向の成分をゼロにしていけば、結果的には

1 0 · · · 0 · · · 0
0 1 · · · 0 · · · 0
...

...
. . .

... · · ·
...

0 0 · · · 1 · · · 0
0 0 · · · 0 · · · 0
...

... · · ·
... · · ·

...
0 0 · · · 0 · · · 0


というように、左上の r × r 部分が単位行列になり、その他の要素が全て０の行列になる。もともと行列 A

は、r 本の線形独立な行ベクトルを持っている事を仮定しており、基本変形をほどこした結果、一見複雑だっ
た行列が単純化されて、この行列 Aのランクが r であることが判る。
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5.8 ランクの性質
ランクの基本的性質� �

1. 　転置行列のランク
rank A = rank At (5.1)

2. 　 Aがm× n行列の時
rank A ≦ min(m,n) (5.2)

3. 　 P が正則行列の場合
rank PA = rank AP = rank A (5.3)

4. 　行列の積のランク
rank BA ≦ min(rank B, rank A) (5.4)� �

■転置行列のランクについて 前節の基底変換によってランクを求める方法を考えれば簡単に理解できる。
もし行列 Aのランクが r ならば、つまり、r 本の線形独立な行ベクトルで構成されるならば、

P−1AQ =



1 0 · · · 0 · · · 0
0 1 · · · 0 · · · 0
...

...
. . .

... · · ·
...

0 0 · · · 1 · · · 0
0 0 · · · 0 · · · 0
...

... · · ·
... · · ·

...
0 0 · · · 0 · · · 0


=

(
Ir 0
0 0

)

というように、左上のブロック行列が次元 r の単位行列 Ir になる。なので、

(P−1AQ)t =

(
Ir 0
0 0

)t

=

(
Ir 0
0 0

)
= P−1AQ

というように、P−1AQの転置行列もやはり、左上のブロック行列が次元 r の単位行列 Ir になる。よって、

rank At = rank (P−1AQ)t = rank (P−1AQ) = rank A

■Aがm× n行列の時 　 rank Aが、m行か n列のどちらか小さい方より小さいのは当たり前である。

■P が正則行列の場合 　 34ページで述べたように、正則行列は、線形独立なベクトルを線形独立のまま写
像するので、空間の次元を変えない。なので当然

rank PA = rank AP = rank A

■行列の積のランク 　以下のようにベクトル空間 U の要素を行列 Aで空間 V に写像して、さらに行列 B

で空間W に写像するとすれば当然、積のランクは Aまたは B のうちで次元の小さい方より小さくなる。

U
−−−−→
A V

−−−−→
B W
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5.9 基本変形を利用して逆行列を求める
正則行列に限れば*20、基本変形によって逆行列を求める事ができる。その事を示そう。

基本変形を利用して逆行列を求める方法� �
行列 Aと単位行列 I を併記した行列を作り、

[A|I] =

 2 3 3 1 0 0
3 4 2 0 1 0
−2 −2 3 0 0 1


という行列を作る。この行列 [A|I]に基本操作を施していくと、左の A部分が単位行列に、右の I 部分
が逆行列になる  1 0 0 −16 15 6

0 1 0 13 −12 −5
0 0 1 −2 2 1

 =
[
I|A−1

]
� �
■何故そうなるのか？ もう一度、73ページの連立一次方程式を解いていった過程をみてみよう。連立方程
式を解く手順は、対角成分を順番に a11, a22, · · · と１にしつつ、最初に下三角部分をゼロにし、次いで上三角
部分をゼロにし、最後に単位行列にしてゆくという操作手順であった。この過程を基本行列で表してみよう。
まず基本行列をかけていった過程は{

R(1, 2;−3

2
)R(1, 3;−3

2
)R(2, 3;−5)R(3, 2;−1)P (2;−2)R(3, 1; 2)R(2, 1;−3)P (1;

1

2
)

}
A

この結果が単位行列になったので、この基本行列のかけ算部分
{
R(1, 2;−3

2
) · · ·P (1;

1

2
)

}
をM とすると、

{
R(1, 2;−3

2
) · · ·P (1;

1

2
)

}
︸ ︷︷ ︸

M

A = I

とあらわすことができる。つまり、単位行列になるまでの基本操作のかけ算を繰り返した部分が逆行列、つま
りM = A−1 となる。このことを利用して逆行列を求める手順が上記である。具体的には、まず以下のように
行列 Aと I を併記した行列を作る。

[A|I] =

 2 3 3 1 0 0
3 4 2 0 1 0
−2 −2 3 0 0 1


次いで、この [A|I]に行に関する基本操作を施していく。そうすると、

M [A|I] = [MA|MI] =
[
I|A−1

]
となり、左の A部分が単位行列に、右の I 部分が逆行列になることになる。具体的に計算してみよう。

*20 そもそも、正則行列でなければ逆行列は存在しない。
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−−−−−−→元の [A|I]

 2 3 3 1 0 0
3 4 2 0 1 0
−2 −2 3 0 0 1


−−−−−−−−−−→
(1/2)× 1行目

 1 3/2 3/2 1/2 0 0
3 4 2 0 1 0
−2 −2 3 0 0 1


−−−−−−−−−−−−−−−→
−3× 1行目+ 2行目

 1 3/2 3/2 1/2 0 0
0 −1/2 −5/2 −3/2 1 0
−2 −2 3 0 0 1


−−−−−−−−−−−−−→
2× 1行目+ 3行目

 1 3/2 3/2 1/2 0 0
0 −1/2 −5/2 −3/2 1 0
0 1 6 1 0 1


−−−−−−−−→
−2× 2行目

 1 3/2 3/2 1/2 0 0
0 1 5 3 −2 0
0 1 6 1 0 1


−−−−−−−−−−−−−−−→
−1× 2行目+ 3行目

 1 3/2 3/2 1/2 0 0
0 1 5 3 −2 0
0 0 1 −2 2 1


−−−−−−−−−−−−−−−→
−5× 3行目+ 2行目

 1 3/2 3/2 1/2 0 0
0 1 0 13 −12 −5
0 0 1 −2 2 1


−−−−−−−−−−−−−−−−−→
−3/2× 3行目+ 1行目

 1 3/2 0 7/2 −3 −3/2
0 1 0 13 −12 −5
0 0 1 −2 2 1


−−−−−−−−−−−−−−−−−→
−3/2× 2行目+ 1行目

 1 0 0 −16 15 6
0 1 0 13 −12 −5
0 0 1 −2 2 1


以上より

A =

 2 3 3
3 4 2
−2 −2 3

 A−1 =

 −16 15 6
13 −12 −5
−2 2 1


元々の方程式は、  2 3 3

3 4 2
−2 −2 3

 x1

x2

x3

 =

 9
9
2


これを Ax = bとすると、方程式の解は x = A−1bであり x1

x2

x3

 =

 −16 15 6
13 −12 −5
−2 2 1

 9
9
2

 =

 3
−1
2


となる。
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6 行列を簡単な形に表現しなおす
ベクトル空間が同じとは、以下の図の V、R、W のような空間であり、それに対して O のように基底が直
線上にあるもの、P のように一点にあるものなどは V、R、W とは異なる空間である、というのは直感的に
納得できると思う。このような空間を同型空間という。なにが同じかというと、これらの空間どうしでは個々

∼
=

∼
=

∼
=

W

R

V P

O

図 44 同じベクトル空間

の元が 1対 1対応し、さらに和とスカラー倍の演算が対応しているのである。まさに線形性という意味で同じ
なのである。
そして、これらは基底の変換と深い関わりがある。どんな関わりかというと、それぞれの空間の基底を変換
してやれば、同型空間はお互いに変換できるのである。実は同じものになるという意味でも同型なのである。
また、正則行列でありさえすれば、基底を変換する行列になり、同型な空間をお互いに変換できる。もっと
も、正則行列が線形独立なベクトルを線形性を保ったまま写像するので当然であろう。
こうした変換を相似変換と呼び、様々な場面ででてくる有効な方法である。なにが有効なのかというと、基
底をうまく変換してやることで、一見複雑な行列を簡単な表現に変える事ができるからである。先に調べた基
本変形によって、行列を簡単な形に書くことができたのは、まさにこうした基底変換の理論的背景を利用して
いるからである。
この節では、こうした基底変換、同型写像、そしてそれを利用して行列を簡単に表現しなおす事の理論的な
背景を調べよう。
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6.1 抽象的なベクトルと線形写像を具体的に表現する
まずは、抽象的な概念であるベクトルや写像を具体的な表現として表す事からおさらいしてみよう。

抽象的なベクトルと線形写像を具体的に表現する� �
• ベクトル xは、あくまで抽象的な存在であって、そこに基底を導入する事で、具体的にベクトルが
成分表示される。

• 線形写像 ϕも、あくまで抽象的な存在であって、標準基底の像を列ベクトルとして横に並べるこ
とによって、具体的な行列として表現できる。� �

では、実際にベクトル空間に基底を導入し、ベクトルが座標値として成分表示され、写像が行列として表現
される事をみてみよう。

6.1.1 標準基底を導入すればベクトルが成分表示できる

e

e

x )(x

x

v

v

x )(

図 45 空間に基底ベクトルを導入する事によって、はじめてベクトルが座標値として表現できる

まずは、基底を導入する事によってベクトルが成分表示出来ることを示そう。以下のように各 i 番目の成
分が 1で、それ以外の成分が全て 0であるようなベクトル ei の集合 {e1, e2, · · · , en}を標準基底 (canonical

base)という。

e1 =


1
0
...
0

 e2 =


0
1
...
0

 · · · en =


0
0
...
1


標準基底とは、一般にイメージするデカルト座標軸である。この標準基底を導入する事によって、ベクトル空
間の任意のベクトルが具体的なデカルト座標として成分表示できる。例えば、空間 V の任意のベクトル xは

x =

 | | |
e1 e2 · · · en
| | |



α1

α2

...
αn


と表現できる。
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つまり、空間 V に標準基底を導入してやれば、ベクトル xは、x = (α1, α2, · · · , αn)
t というように一意に

座標値として成分表示できる。もちろん、図 45のように、斜交する基底ベクトルを導入しても同じように成
分表示できる（5ページ参照）。

6.1.2 標準基底の像として、写像 ϕが行列表現できる

e

e

x

x

A

e

e

x

x
x

)(e

)(e

)(e

)(e

1
√

2

1
√

2

)(
1
√

2

1
√

2

図 46 標準基底の像 e′i を横に並べて作った行列が写像 ϕの表現行列である

同様に、標準基底を導入すると抽象的な写像を行列で表現できる。次に、その事を具体的に示していこう。
いま、n次元空間 V からm次元空間W への線形写像 ϕがあったとし、元の n次元空間 V の標準基底ベクト
ルを

e1 =


1
0
...
0

 e2 =


0
1
...
0

 · · · en =


0
0
...
1


とし、その基底ベクトルが線形写像 ϕによって、以下のように m次元空間W のベクトルに写像されている
としよう。

ϕ(e1) =


a11
a21
...

am1

 ϕ(e2) =


a12
a22
...

am2

 · · · ϕ(en) =


a1n
a2n
...

amn


実は、この標準基底ベクトルの像 {ϕ(e1), ϕ(e2), · · · , ϕ(en)}を列ベクトルとして横に並べた行列 A

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
. . .

. . .
...

. . .

am1 am2 · · · amn


が線形写像 ϕを表す行列となり、n次元空間 V の任意のベクトル xに行列 Aをかけた結果 Axが、ϕ(x)と
同値になる。この事が本当に成り立つかを確認してみよう。
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まずは個々の基底ベクトルについて考えてみよう。例えば、最初の標準基底ベクトル e1 に行列 A をかけ
ると、

Ae1 =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn



1
0
...
0

 =


a11
a21
...

am1

 = ϕ(e1)

となり、１列目が抽出され、確かに ϕ(e1)となっている。同様に全ての基底について

Aei =


a1i
a2i
...

ami

 = ϕ(ei) (6.1)

となるので、各基 底ベクトルに行列 Aを書けた結果は、そのベクトルを ϕで写像した結果と同じである。
では、任意のベクトル xに行列 Aをかけたものも、そのベクトルを ϕで写像したものと同じになるのだろ
うか。まず、任意のベクトル xは

x = α1e1 + α2e2 + · · ·+ αnen (6.2)

と表す事ができる。そしてこのベクトルを ϕで写像した結果は、ϕが線形性を持っているので、

ϕ(x) = α1ϕ(e1) + α2ϕ(e2) + · · ·+ αnϕ(en) (6.3)

となるはずである。行列 Aによる写像でも、この式 6.3が成立する事を確認出来ればよい。そこで、まず式
6.2を行列表現してみると

x =


1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1



α1

α2

...
αn


となる。これに行列 Aをかけると

Ax =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn



1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1



α1

α2

...
αn


右辺の標準基底を横に並べた行列は、単位行列に他ならないので

Ax =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn



α1

α2

...
αn

 = α1


a11
a21
...

am1

+ α2


a12
a22
...

am2

+ · · ·+ αn


a1n
a2n
...

amn


ここで、式 6.1より、

a11
a21
...

am1

 = ϕ(e1),


a12
a22
...

am2

 = ϕ(e2), · · · ,


a1n
a2n
...

amn

 = ϕ(en)
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なので、
Ax = α1ϕ(e1) + α2ϕ(e2) + · · ·+ αnϕ(en)

となり、式 6.3が成立した。つまり図 46のように標準基底の像を列ベクトルとして横に並べた行列 Aによっ
て、線形写像 ϕを表現する事が出来る。この行列 Aを線形写像 ϕの表現行列と呼ぶ。
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6.2 基底を変換する行列を求める
線形写像 ϕは、あくまで抽象的な写像であり、そこに標準基底を導入し、標準基底の像として表現すること
で具体的な行列表現を得た。ここでは、基底を変換する方法について検討する。
いまベクトル空間 V の基底を {a1, a2, · · · , an}であるとし、さらにこの空間 V に別の基底 {b1, b2, · · · , bn}
が設定できるものとする。このとき、新しい基底 {b1, b2, · · · , bn} の 1 つ 1 つは、当然ながら前の基底
{a1, a2, · · · , an}の一次結合で表すことができるはずなので、係数を p11, p21, · · · , pn1 とすると

b1 = p11a1 + p21a2 + · · ·+ pn1an

と表すことができる。これを行列で表現すると
 |
b1
|

 =

 | | |
a1 a2 · · · an
| | |



p11
p21
...

pn1


同様に、b2, · · · , bn を行列表現すると

 |
b2
|

 =

 | | |
a1 a2 · · · an
| | |



p12
p22
...

pn2

 · · ·

 |
bn
|

 =

 | | |
a1 a2 · · · an
| | |



p1n
p2n
...

pnn


これらをまとめて横に並べて行列にすると

 | | |
b1 b2 · · · bn
| | |

 =

 | | |
a1 a2 · · · an
| | |



p11 p12 · · · p1n
p21 p22 · · · p2n
...

...
. . .

...
pn1 pn2 · · · pnn


というように、新しい基底は元の基底 {a1, a2, · · · , an}を横に並べた行列に対して、右から n次の正方行列を
掛けたものになる。これを

B = AP (6.4)

と表そう。この式をみると、行列 P が基底 {a1, a2, · · · , an}を基底 {b1, b2, · · · , bn}へ変換している事を意味
している事になる。このときの行列 P を基底変換行列と呼ぶ。では、この行列 P は正方行列ならばどんな行
列をとっても基底変換行列になるのかというと、ある条件があり、次の定理のように、行列 P が正則行列と
なっている事が必要になる。

6.2.1 正則行列なら基底変換行列となる事を示す

定理 6.1. 基底変換行列となる為の必要十分条件
ベクトル空間 V の１組の基底を {a1, a2, · · · , an}とする。このとき空間 V に n個のベクトル b1, b2, · · · , bn
を取ったとき、この b1, b2, · · · , bn が V の基底であるための必要十分条件は

bj =

n∑
i=1

pijai これを行列表現し B = AP
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と書いたとき、行列 P が正則行列になっている事である。

■新しいベクトルの組 bi が基底であったとすると P は正則行列である 　まずは、b1, b2, · · · , bn が空間 V

の基底であったとしよう。その時は逆に、a1, a2, · · · , an のそれぞれが、また b1, b2, · · · , bn の一次結合で表す
ことができるはずである。つまり

aj =

n∑
i=1

qijbi これを行列表現し A = BQ

と表すことができるはずである。なので
B = AP かつ A = BQ

が成り立つ。この一番目の式を二番目に代入すると
A = APQ

ここで、行列 Aは基底ベクトルであり線形独立であり逆行列を持つので、両辺に A−1 をかけると
PQ = I

となる。つまり Q = P−1 とおくことが出来、P が逆行列を持っている事になる。なので、P は正則行列で
ある。

■P が正則行列であったとすると P は基底変換行列である こんどは逆に B = AP と表した時に、P が正則
行列であったとすると P は基底変換行列である事を示そう。P が基底変換行列であるという事を示すには B

の列ベクトルがお互いに線形独立である事を示せばよい。つまり、B に逆行列が存在する事を示せばよい。
ここで、Aは基底行列で列ベクトルは互いに線形独立だから逆行列をもっている。さらに B = AP と表す
事が出来て、しかも P が正則で逆行列 P−1 を持つとすると、図 47のような構造になっている事は容易に想
定される。この図のように I と Aと B とがお互いに変換できるならば、B−1 が成立すればよいのである。

I

A B

A

A

B

B

P

P

図 47 それぞれ左から行列を掛けると相互に変換される

では、この構造が成り立つ事を示していこう。P と Aが逆行列を持つので
(P−1A−1)AP = I

となるのは明らかである。ここで B = AP なので、この式は
(P−1A−1)B = I

とかける。つまり (P−1A−1)が B の逆行列に他ならない。つまり、B は逆行列を持つので正則行列である。
という事は、列ベクトルがお互いに線形独立であり、空間 V の基底となっていることが判る。
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6.3 ベクトル空間の同型
ベクトル空間の構造が同じである事について� �
ある空間と別な空間の個々の元が 1対 1対応し、さらに和とスカラー倍の演算が対応している場合、そ
の対応写像を同型写像という。ベクトル空間の同型とは、その同型写像がある事で定義される。そして、
同型写像はベクトルの線形独立性を保つので、同じ次元の空間には同型写像が存在する。つまり２つの空
間が同型であるかどうかは、２つのベクトル空間の次元のみを調べれば判る。つまり

dim V = dim W = n

が成立するならベクトル空間 V とW は同型であるといえる。� �
6.3.1 ベクトル空間の同型とは
先に調べたように、正則行列によって空間の基底が変換できる。なので、図 48のように標準基底で定義さ
れた空間 I を元に、そこから基底変換によって空間 Aや B などを作り出す事ができる*21。当然、これらは共
通の性質をもっているはずである。

I

A B

A

A

B

B

P

P

図 48 基底変換によってお互いに変換できる空間の集合

そこで、このような正則行列によってお互いに変換される空間の集合を考え、その集合の特徴を調べていく
事にする。まずは同型という言葉を定義しよう。

定義 6.1. ベクトル空間の同型
２つのベクトル空間 V とW があり、V からW への写像 ϕが存在して、以下の性質を満たすとき、ベクト
ル空間 V とW は同型であるといい、V ∼= W とかく。

1. 写像 ϕが全単射である。つまり、V からW への 1対 1対応させる写像である。
2. 写像 ϕが線形写像である。つまり以下の２つが成立する。
（a）ϕ(x+ y) = ϕ(x) + ϕ(y) (x, y ∈ V )

（b）ϕ(αx) = αϕ(x) (α ∈ R, x ∈ V )

このように、ベクトル空間の同型とは、要素と要素の対応付けの規則が存在するという事から定義される。

*21 この行列 Aや B も、基底ベクトルを列ベクトルとする行列なので正則行列である。
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つまり、図 49のように、要素どうしが 1対 1に対応付けられているだけでなく、それらの要素の間に和とス
カラー倍の計算までが対応している。つまり、２つのベクトル空間が、要素の対応と演算の線形性という意味
で本質的に同じ構造を持っている事を表している。

x y

x

∈x y V

+ x y

x

+

∈x y WV W

xx

yy

図 49 ベクトル空間が同型になる条件

この２つの空間を同型であると定義しているのが写像 ϕである。この ϕを同型写像と呼ぶ。同型写像は以
下の性質をみたす。

定理 6.2. 　同型写像の性質
ベクトル空間の間の同型写像は、線形独立なベクトル群を線形独立なベクトル群に写像する。つまり、線形
独立性を保つ。

ϕを V からW への同型写像とし、V の一次独立なベクトル v1, v2, · · · , vn を考える。これらの一次独立な
ベクトルの像は、下図のように ϕ(v1), ϕ(v2), · · · , ϕ(vn)となる。

V W

...
...

v1

v2

vn

(v1)

(v2)

vn)(

このとき、
a1ϕ(v1) + a2ϕ(v2) + · · ·+ anϕ(vn) = 0 (6.5)

が成立するなら a1 = a2 = · · · = an = 0である事を示せば、像 ϕ(v1), ϕ(v2), · · · , ϕ(vn)も線形独立であるこ
とになる。
ここで、写像 ϕが線形性を持っている（ϕ(x+ y) = ϕ(x) + ϕ(y)であり、ϕ(αx) = αϕ(x)である）事から、
この左辺は ϕ(a1v1 + a2v2 + · · ·+ anvn)となるので

a1v1 + a2v2 + · · ·+ anvn = 0

元々の v1, v2, · · · , vn は一次独立であると想定しているのだから、a1 = a2 = · · · = an = 0でなければならな
い。なので、式 6.5 が成立すれば、a1 = a2 = · · · = an = 0 であり、ϕ(v1), ϕ(v2), · · · , ϕ(vn) も一次独立で
ある。
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6.3.2 次元が同じであれば同型である
ベクトル空間の同型は、同型写像がある事で定義された。そして、こうした同型写像 ϕの表現行列が、正則
行列である*22。33ページに述べたように、正則行列によって線形独立なベクトルを写像した像は線形独立な
まま写像される。

∼
=

∼
=

∼
=

W

R

V P

O

図 50 同じベクトル空間

線形独立な基底ベクトルの数が変わらないものを同型と定義できるので、空間 O や P は同型ではないが、
図 50の Rのように基底が直交する場合も、V やW のように斜行する場合も同型空間であるといえる。つま
り、同じ n次元の独立した基底をもっている空間ならば、同型であるという事を意味している。

定理 6.3. 同型であるための必要十分条件
ベクトル空間 V とW が同型であるために必要十分条件は

dim V = dim W

が成り立つことである。

空間 V からW への同型写像 ϕが存在するなら、ϕは独立性を保つ（参考.33ページ）から dim V = dim W

は成立する。なので、ここでは、逆に dim V = dim W = nであるとき、V からW への同型写像 ϕを定め
る事が出来る事を確認しよう。つまり、線形であり、単射であり全射（つまり上への 1対 1対応）であるよう
な写像 ϕを定める事ができる事を確認しよう。
ベクトル空間 V とW の基底を一組ずつとって

{v1, v2, · · · , vn} {w1, w2, · · · , wn}

とする。このとき、空間 V の任意の要素 xは x = a1v1 + a2v2 + · · ·+ anvn と表すことができる。この任意
の V の要素を空間W に移す写像として、以下のような写像 ϕを定義する。

ϕ(x) = a1w1 + a2w2 + · · ·+ anwn

*22 正則行列は 10ページの定義のように全単射（上への 1対 1対応）の写像を表す行列として定義される。
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つまり、基底を vi → wi に変えながらも、座標値 (a1, a2, · · · , an) は同じになるような写像を定めるのであ
る。このとき、写像 ϕはが線形写像であり、上への 1対 1対応である事を確認しよう。

写像 ϕは線形写像である事 　以下の図のように、ϕ(x1 + x2) = ϕ(x1) + ϕ(x2) である事が判る。ϕ(αx) =

αϕ(x)も同様に示すことができるので、この写像 ϕが線形写像である*23事が判る。

x1 = a1v1 + a2v2 + · · · + anvn

x2 = b1v1 + b2v2 + · · · + bnvn

x1) = a1w1 + a2w2 + · · · + anwn

(x2) = b1w1 + b2w2 + · · · + bnwn

x1 + x2

(a1 + b1)v1 + (a2 + b2)v2 + · · · + (an + bn)vn (a1 + b1)w1+ (a2 + b2)w2+ · · · + (an + bn)wn

= (x1) + (x2) =

写像 ϕは 1対 1対応である事 背理法を用いて確認する。

(x1) − (x2) = 0

(x1) − (x2) = (a1 − b1)w1 + (a2 − b2)w2 + · · · + (an − bn)wn

(a1 − b1)w1 + (a2 − b2)w2 + · · · + (an − bn)wn = 0

x1 = a1v1 + a2v2 + · · · + anvn

x2 = b1v1 + b2v2 + · · · + bnvn

x1) = a1w1 + a2w2 + · · · + anwn

(x2) = b1w1 + b2w2 + · · · + bnwn

=

V W

図のように空間 V の２つの要素が同じ要素を指していたとする。つまり、ϕ(x1) = ϕ(x2)となってい
たとすると、ϕ(x1)− ϕ(x2) = 0であり、図のように、

(a1 − b1)w1 + (a2 − b2)w2 + · · ·+ (an − bn)wn = 0

ここで、{w1, w2, · · · , wn}は基底であり線形独立なので、この式が成立するためには全ての係数がゼロ
である。つまり

a1 = b1, a2 = b2, · · · an = bn

であり、x1 = x2 となる。つまり異なる２点が同じ点に写像される事はないことから、1対 1対応であ
ることが判る。

写像 ϕは上への写像である事 　空間W の任意のベクトルは、a1w1 + a2w2 + · · ·+ anwn と書くことができ
る。このとき、この元になる像が必ず存在する。何故ならば、写像 ϕを

ϕ(a1v1 + a2v2 + · · ·+ anvn) = a1w1 + a2w2 + · · ·+ anwn

と定義しているので、a1v1 + a2v2 + · · ·+ anvn がその元になる要素になるからである。つまり、空間
W の任意の要素に対して元になる要素が存在するので、写像 ϕは上への写像である。

*23 線形写像であるためには、ベクトル同士の和とスカラー積が閉じている事を示せば良い。
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このように、ベクトル空間の次元さえ調べれば、それらのベクトル空間どうしが同型であるかどうかが判る
のである。
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6.4 基底を変換するとベクトル表現と行列表現がどう変わるか
正則行列 P を右からかける事で基底を変換する事ができる事が判った。では、基底を変換した場合にベク
トルの成分表示や線形写像の行列表現はどのように変化するかを調べよう。

基底変換による表現� �
基底を正則行列 P で変換すると、写像を表す行列 S もベクトル xの成分表示も、同じ行列 P による変
換を受ける。つまり、ベクトル xは P−1xとなり、行列 S は P−1SP となる。このように基底に取り替
えることで、写像を表す行列を相似なものに取り替ることを相似変換という。� �

6.4.1 基底を変換するとベクトルの成分表示がどのように変わるかを調べる
まずはベクトルの成分表示がどのように変わるかを調べよう。ここで、n 次元空間上の任意のベクトル x

は、{a1, a2, · · · , an}を基底とし、その成分を α1, α2, · · · , αn とすると

x =

 | | | |
a1 a2 · · · an
| | | |



α1

α2

...
αn


とあらわす事が出来た。そして、この同じベクトル xを新しい基底 {b1, b2, · · · , bn}の世界で表現出来たとす
ると

x =

 | | | |
b1 b2 · · · bn
| | | |



β1

β2

...
βn


というように、同じベクトル xを別の成分 β1, β2, · · · , βn であらわす事が出来るはずである。この２つのベク
トルが同じなので

Aα = Bβ

この式を変形していこう。その時に、この２つの基底ベクトル群を変換する行列として、式 (6.4)のように必
ず正則行列 P が存在する。つまり

 | | | |
b1 b2 · · · bn
| | | |

 =

 | | | |
a1 a2 · · · an
| | | |



p11 p12 · · · p1n
p21 p22 · · · p2n
...

...
. . .

...
p11 p12 · · · p1n


となっている事を利用する。つまり

B = AP であり A = BP−1

ことを利用して、Aα = Bβ から B を消すと

Aα = APβ
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Aは基底行列なので列ベクトルはお互いに線形独立であり逆行列を持つ。なので A−1 が存在するので、A−1

を両辺にかけて
α = Pβ

同様に、今度は Aα = Bβ から A = BP−1 である事を利用して Aを消すと

BP−1α = Bβ

B も、基底行列なので列ベクトルはお互いに線形独立であり逆行列を持つ。なので B−1 が存在するので、
B−1 を両辺にかけて

β = P−1α

つまり、図 51のように、基底が行列 P によって変換されると、ベクトルは β = P−1αのように変換される。

A : a1 a2 · · · an

B : b1 b2 · · · bn

B = APA = BP
−1

= P
−1

= P

図 51 基底を P で変換するとベクトルも同じ P によって変換される

6.4.2 基底を変換すると写像を表す行列はどのように変化するかを調べる
次に、基底を変換した場合にベクトルの間の写像にも同じような事が生じるかを調べてみよう。前節ではベ
クトルは同じで基底を変えた。この節ではベクトルを変える行列が基底を変える事でどのように変化するのか
を調べる。
まず、ある写像 ϕが、基底を A : {a1, a2, · · · , an}とした時に S と表されているとする。そして、この写像
がベクトル v を w に写像しているものとする。つまり w = Sv という関係があるとする。いま、新たに正則
行列 P によって、基底を A : {a1, a2, · · · , an}から {b1, b2, · · · , bn}に変換した時に、この写像 S がどのよう
に変化するかを調べよう。

A : a1 a2 · · · an

B : b1 b2 · · · bn

B = APA = BP
−1 v = Pv′v′

= P−1v w = Pw′w′
= P−1w

v
′

w ′

v w
S

P−1SP

図 52 基底を P で変換すると写像を表す行列の表現も変化する
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まずベクトルが新しい基底でどのように表現されるかを確認しよう。ベクトル v と w を新しい基底で表現
したものを v′ と w′ としたとき、前節のように{

v = Pv′ であり v′ = P−1v

w = Pw′ であり w′ = P−1w

となる。これをつかって、線形写像 w = Svを新しい基底で表現する。上式の v = Pv′、w = Pw′ を w = Sv

に代入して
Pw′ = SPv′

つまり
w′ = P−1SPv′ (6.6)

このように、ある正則なベクトル P によって、ベクトル v は v′ = P−1v に、また写像 S は P−1SP に写さ
れる。このように基底に取り替えることで、写像を表す行列を相似なものに取り替ることを相似変換という。

コラム　：　基底変換・座標変換・相似変換

これらの変換は、以下の 1○と 2○がキーで、あとは式変形で計算していける。

1○ 　新基底が旧基底の線形結合で表される事から B = AP とおく
2○ 　基底と成分の線形結合から Av = Bv′ とおいて、上記 B = AP を当てはめて v = Pv′

3○ 　 v′ → v → w → w′ と時計回りに座標変換していけば、w′ = P−1SPv′ となる

基底変換 座標変換

旧基底

新基底

① ②

③
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6.4.3 基底の変換によるベクトルと行列の変換事例
実際に具体例で、基底変換した時にベクトルがどのように変わるか、行列がどのように変わるかをみてみ
よう。

事例 6.1. 三次元空間 R3 に対して、基底 Aと基底 B を以下のように定義する。

A =


 1

0
1

 ,

 2
1
0

 ,

 0
1
1

 , B =


 1

3
1

 ,

 −1
0
2

 ,

 1
1
2


また、元々の基底 {a1, a2, a3}で定義されたベクトル v と w を

v =

 1
0
1

 , w =

 0
1
3


とし、v → w という写像を

S =

0 −1 0
1 2 0
2 2 1


としよう。この時、新しい基底 {b1, b2, b3}で定義される空間では、ベクトル v、w、行列 S がどのように
表現されるかを調べてみよう。

■基底変換行列を求める 　まず基底を Aから B へ変換する基底変換行列 P を求めてみよう。

I

A B

A

A

B

B

P A B

図 53 基底変換行列 P を求める

図 53のように、この３つの空間 I、A、B は同型空間であり、I から Aへの同型写像 Aが存在し、その A

による I の基底ベクトルの像を横に並べたものが行列 Aである。同様に空間 I から基底 B による空間への写
像として行列 B が定義される。
なので、図 53のように、基底を Aから B に変換する行列 P は

P = A−1B =

−1 1 1
1 −1 0
2 1 1


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となる。では、ベクトル v 及び w はどのようになるかを求めよう。まず P−1 は

P−1 =

− 1
3 0 1

3
− 1

3 −1 1
3

1 1 0


なので

v′ = P−1v =

− 1
3 0 1

3
− 1

3 −1 1
3

1 1 0

1
0
1

 =

0
0
1


同様にして w は

w′ = P−1w =

1
0
1


そして、v → w の変換をする行列 S は、新しい基底では

S =

0 −1 0
1 2 0
2 2 1

 なので P−1SP =

1 0 1
0 1 0
0 0 1


となるはずである。実際

P−1SPv′ =

1 0 1
0 1 0
0 0 1

0
0
1

 =

1
0
1

 = w′

となっており、元の基底での S と P−1SP が同じ働きをしている事がわかる。
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6.5 基本変形によって行列を簡単にする理論
図 59の左図のように、同じ次元 nの空間は同型であり、その間に定義された写像を同型写像といった。こ
こでは、図 59の右のように同型写像をより一般化した線形写像について考え、行列を簡単に表現する方法と
してはき出し法の理論的な背景を整理してみよう。

V W

n n n m

V W

図 54 同型写像と線形写像

基本変形と基底変換� �
n次元空間Wn の基底を変換する正則行列を P、n次元空間Wn の基底を変換する正則行列を Qとする
と、新しい基底の元での行列 Aは

P−1AQ =



1 0 · · · 0 · · · 0
0 1 · · · 0 · · · 0
...

...
. . .

... · · ·
...

0 0 · · · 1 · · · 0
0 0 · · · 0 · · · 0
...

... · · ·
... · · ·

...
0 0 · · · 0 · · · 0


というように単純な形に表現する事ができる。78ページに行ったはきだし法の基本行列による変形がし
ているのは、まさにこうした基底変換であり、行列 Aに対して、基底を変換して出来るだけ簡単な行列
として表すという事をしている。� �

6.5.1 基底を変えた時の表現行列 Aを求める
まずは一般の線形写像 Aがあったとき、２つの空間 V とW の基底を変換すると A = P−1AQとなる事を
示そう。
図 55のように、m次元空間 Vm の要素 v を、n次元空間Wn の要素 w に写像するような、n×m行列 A

による w = Av という写像があったとする。この時、それぞれの空間 Vm とWn の基底を別々に変換する事
を考える。
つまり、元々の基底でのベクトル v が、ある正則な行列 Qによる基底変換によって新しい基底で v′ と表現
され、ベクトル w が、ある正則な行列 P による基底変換によって新しい基底で w′ と表現されたと考えるの
である。このとき、写像を表す行列 Aがどのように変わるかを調べてみよう。
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Vm

v

Wn

w

′v ′w

v ′vQ

vw A

Pw ′w

図 55 基底変換でクトルの座標値と変換行列が変わる

いま空間 Vm において、元々の基底で表したベクトル v を v = (v1, v2, · · · , vm)とおき、新しい基底で表し
たベクトル v′ を、v′ = (v′1, v

′
2, · · · , v′m)とおいたとすると、元々の基底で表したベクトル v は

v1


1
0
...
0

+ v2


0
1
...
0

+ · · ·+ vm


0
0
...
1


である。一方、新しい基底で表したベクトル v′ は

v′1


q11
q21
...

qm1

+ v′2


q21
q22
...

qm2

+ · · ·+ v′m


q1m
q2m
...

qmm


であり、このベクトルは、Qv′ とかける。これが元々のベクトル v と同じなので、

v = Qv′ (6.7)

同様に、空間Wn において、元々の基底で表したベクトルを w とおき、新しい基底で表したベクトルを、w′

とおいたとすると、
w = Pw′ (6.8)

となる。一方、元々の写像は、
w = Av (6.9)

であり、この式 6.9に式 6.7と式 6.8を代入すると

Pw′ = AQv′

P は基底変換行列であり正則行列なので、必ず逆行列をもつので

w′ = P−1AQv′ (6.10)

と表すことができる。つまり、図 56のように、空間 V とW とに新しくとった基底で表現すると、行列 Aは
P−1AQと表されることになる。

103



Vm

v

Wn

w
A

′v ′w

PQ

P AQ

PQ

図 56 基底を変えた場合の行列とベクトルの表現

6.6 基本変形による基底変換
このような基底変換行列 Q、P をうまく取れば、行列 Aを簡単な表現に変える事ができる。はきだし法の
基本変形による行列の変形はまさにこうした基底変換をしている事にほかならない。では、次に基本変形が何
をしているのかを再度考えてみよう。

6.6.1 基本行列を施す事は正則行列による基底変換と同じ事をしている
76ページに述べたように基本行列は正則行列なので、基本行列同士の積もまた正則行列である。なので、あ
る行列に基本変形を繰り返し施すという事は、基底を変換していると考える事ができる。では、具体的に 79

ページの節 5.7.2の事例でみてみよう。
行列

A =

 1 2 3 4
2 5 6 9
5 13 15 23


を変形していった過程は、

(1) − 2× 1行+ 2行　⇒ (2) − 5× 1行+ 3行　⇒ (3) − 3× 2行+ 3行　
(4) − 2× 1列+ 2列　⇒ (5) − 3× 1列+ 3列　⇒ (6) − 4× 1列+ 4列　⇒ (7) − 1× 2列+ 4列

というように、基本行列での変形を７回おこなっている。これを基本行列の積で表現すると

R(3;2;−3)︸ ︷︷ ︸
(3)

R(3;1;−5)︸ ︷︷ ︸
(2)

R(2;1;−2)︸ ︷︷ ︸
(1)

AR(2;1;−2)︸ ︷︷ ︸
(4)

R(3;1;−3)︸ ︷︷ ︸
(5)

R(4;1;−4)︸ ︷︷ ︸
(6)

R(4;2;−5)︸ ︷︷ ︸
(7)

というようになる*24。この時、右からの行に対する変形の基本行列群の積を S、左から列に対する変形の基
本行列群の積を T とする。つまり

*24 R(3;2;−3)︸ ︷︷ ︸
(3)

R(3;1;−5)︸ ︷︷ ︸
(2)

R(2;1;−2)︸ ︷︷ ︸
(1)

の部分は、R(2;1;−2)︸ ︷︷ ︸
(1)

R(3;1;−5)︸ ︷︷ ︸
(2)

R(3;2;−3)︸ ︷︷ ︸
(3)

ではない。なぜなら、行列の積は最初に Aに (1)をか

けるので、R(2;1;−2)︸ ︷︷ ︸
(1)

A、次に (2)をかけるので R(3;1;−5)︸ ︷︷ ︸
(2)

R(2;1;−2)︸ ︷︷ ︸
(1)

Aという順番になるからである。
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R(3;2;−3)︸ ︷︷ ︸
(3)

R(3;1;−5)︸ ︷︷ ︸
(2)

R(2;1;−2)︸ ︷︷ ︸
(1)

⇒ S

R(2;1;−2)︸ ︷︷ ︸
(4)

R(3;1;−3)︸ ︷︷ ︸
(5)

R(4;1;−4)︸ ︷︷ ︸
(6)

R(4;2;−5)︸ ︷︷ ︸
(7)

⇒ T

とすると、基本変形は

R(3;2;−3)R(3;1;−5)R(2;1;−2)︸ ︷︷ ︸
S

AR(2;1;−2)R(3;1;−3)R(4;1;−4)R(4;2;−5)︸ ︷︷ ︸
T

= SAT (6.11)

とかける。つまり、正則行列 S と T の積によって、行列 Aが以下のように簡単な形に変形できたという事で
ある。

SAT =

 1 0 0 0
0 1 0 0
0 0 0 0


6.6.2 ベクトル・行列がどのように変わるかをみてみよう
先の式 6.10の P−1AQと、式 6.11の SAT とを比較してみると、{

S = P−1

T = Q
(6.12)

という関係ではないかという事が想定できる。実際に具体的なベクトル、v = (3, 1,−1, 0)t、w = (2, 5, 13)t

をとって調べてみよう。まず w = Av という関係式は以下のようになる。 2
5
13

 =

 1 2 3 4
2 5 6 9
5 13 15 23




3
1
−1
0


これをすべて新しい基底での表現 v′, w′, P−1AQに直してみたのが図 57である。
この図の導出過程を詳細に説明しよう。まず、v = Qv であり、w = Pw なので{

v′ = Q−1v

w′ = P−1w

である。この Q−1 と P−1 を基本変形の結果できた SAT の S と T から求めてみよう。

S = R(3;2;−3)R(3;1;−5)R(2;1;−2) =

 1 0 0
−2 1 0
1 −3 1



T = R(2;1;−2)R(3;1;−3)R(4;1;−4)R(4;2;−5) =


1 −2 −3 −2
0 1 0 −1
0 0 1 0
0 0 0 1


これが式 6.12の関係を満たすとして P と Qを求めると、

P−1 =

 1 0 0
−2 1 0
1 −3 1

 , Q−1 = T−1 =


1 2 3 4
0 1 0 1
0 0 1 0
0 0 0 1


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V W

w

A




2

5

13



v









3

1

−1

0









=

=





1 2 3 4

2 5 6 9

5 13 15 23





=

Q









1 2 3 4

0 1 0 1

0 0 1 0

0 0 0 1









= P





1 0 0

−2 1 0

1 −3 1





=

′v =









2

1

−1

0









′w =





2

1

0





P AQ





1 0 0 0

0 1 0 0

0 0 0 0



=

図 57 基底変換の事例

なので

v′ = Q−1v =


1 2 3 4
0 1 0 1
0 0 1 0
0 0 0 1




3
1
−1
0

 =


2
1
−1
0


w′ = P−1w =

 1 0 0
−2 1 0
1 −3 1

 2
5
13

 =

 2
1
0


実際に  2

1
0

 =

 1 0 0 0
0 1 0 0
0 0 0 0




2
1
−1
0


となり、確かに

w′ = P−1AQv′

という関係式を満たしている。つまり、

基本変形による行列 An×m の変換とは、ある正則行列 Qm と Pn によって、空間 Vm と空間Wn の基底を
変換して、行列 Aを以下のように簡単な構造に表現しなおす事であるといえる。

P−1AQ =



1 0 · · · 0 · · · 0
0 1 · · · 0 · · · 0
...

...
. . .

... · · ·
...

0 0 · · · 1 · · · 0
0 0 · · · 0 · · · 0
...

... · · ·
... · · ·

...
0 0 · · · 0 · · · 0


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7 線形写像と部分空間
４つの基本部分空間 (Four Fundamental Subspace)は、MITのストラング（Gilbert Strang）が提唱した
理論。以下の図 58はストラングの書籍 [19]からの引用。この図は、m × n行列 Aの線形変換 y = Axに関
連する４つの部分空間があり、それらがどのように関連しているかを示した図になっている。

●

●

●

●

●

●

列空間行空間

零空間 左零空間

図 58 4つの基本部分空間（ストラング [19]より）

この図 58が示している内容を列挙すると以下のようになる。

(1) Ax = bは Rn から Rm への線形写像である
a11 a12 · · · a1n
a21 a22 · · · a2n
. . .

. . .
...

. . .

am1 am2 · · · amn


︸ ︷︷ ︸

m×n


x1

x2

...
xn


︸ ︷︷ ︸
n×1

=


b1
b2
...
bm


︸ ︷︷ ︸
m×1

(2) 列空間 C(A)：Axは、行列 Aの列ベクトルの線形結合で表される空間に存在する

Ax =

 | | · · · |
a1 a2 · · · an

| | · · · |



x1

x2

...
xn

 = x1a1 + x2a2 + · · ·+ xnan

(3) 行空間 C(AT )：AT y は、行列 Aの行ベクトルの線形結合で表される空間に存在する
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行列 Aの行ベクトルを a∗
m とあらわすとすると、

A =


− a∗

1 −
− a∗

2 −
...

...
...

− a∗
m −


AT y は、行列 Aの行ベクトルの線形結合で表される

AT y =

 | | · · · |
a∗
1 a∗

2 · · · a∗
m

| | · · · |




y1
y2
...
ym

 = y1a
∗
1 + y2a

∗
2 + · · ·+ yma∗

m

(4) 零空間 N(A)：Ax = 0を満たすベクトル xの集合で、行空間 C(AT )に直交する空間になる
以下のように Ax = 0は、行列 Aの行ベクトル a∗

m との内積 < a∗
m,x >= 0である事を示しており、

ベクトル xは全ての行ベクトルに直交する。

Ax =


− a∗

1 −
− a∗

2 −
...

...
...

− a∗
m −


 |
x
|

 =


< a∗

1,x >
< a∗

2,x >
...

< a∗
m,x >

 =


0
0
...
0


(5) 左零空間 N(AT )：AT y = 0を満たすベクトル y の集合で、列空間 C(A)に直交する空間になる
以下のように AT y = 0は、行列 Aの列ベクトル an との内積 < an,y >= 0である事を示しており、
ベクトル y は全ての列ベクトルに直交する。

AT y =


− a1 −
− a2 −
...

...
...

− an −


 |
y
|

 =


< a1,y >
< a2,y >

...
< an,y >

 =


0
0
...
0



108



7.1 部分空間について
部分空間と直和分解� �
ベクトル空間 U が V の線形部分空間であるとき、U ⊕ Ũ = V と直和分解できるような補部分空間 Ũ が
必ず存在し、元の空間 V の次元は以下のように２つの部分空間の次元の和となる。

dim V = dim U + dim Ũ� �
図 59のように、n次元から n次元への 1対 1対応の線形写像を同型写像といった。この定義から”上への

1対 1対応”という条件を除くと、一般の n次元から m次元への線形写像の定義になる。ここでは、同型写
像をより一般化した線形写像についてその理論を検討する。

V W

n n n m

V W

図 59 同型写像と線形写像

こうした一般の線形写像の構造を捉えるためには、部分空間の構造に関する概念を準備しておく必要があ
る。なので、まずは幾つかの部分空間に関連する用語を定義していく。

7.1.1 部分空間の定義
最初に部分空間について、66ページの部分空間の定義 5.1を再度のべる。

線形部分空間の定義
V をベクトル空間とする。その V の部分集合 U が次の性質を持つとき、U を V の線形部分空間という。

1. x, y ∈ U ⇒ x+ y ∈ U

2. αが実数、x ∈ U ⇒ αx ∈ U

定義から判るように、線形部分空間の定義は、V の内部にあるという点が違うだけで、線形空間の定義と同
じである。

7.1.2 和空間と直和
ついで、和空間と直和についてのべる。直和は、和空間の特別な場合である。
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定理 7.1. 　和空間
VA、VB を線形空間 V の２つの線形部分空間とすると、２つの線形部分空間の元の和 va + vb（ただし
va ∈ VA, vb ∈ VB）からなる集合を

VA∩B = VA + VB

という記号で現し、和空間と呼ぶ。和空間 VA∩B はまた線形部分空間である。

■和空間 VA∩B は線形空間である 　和空間 VA∩B が和とスカラー積について閉じていることを示そう。
任意の元 x, y が和空間の元である、つまり x, y ∈ VA∩B を満たすとすると、xは VA の元 a1 と VB の元 b1

によって x = a1 + b1 と表す事ができる。同様に y も y = a2 + b2 と表す事ができる。

VA VB

x = a1 + b1 y = a2 + b2

a1 b1

a2 b2
x =+ y a1 + b1a2 + b2+

x + y

VA∈a1 + a2 VB
b1+ b2 ∈

VA∩B∈

図 60 和空間が和について閉じている事の説明

すると、図 60のように、

x+ y = (a1 + b1) + (a2 + b2) = (a1 + a2) + (b1 + b2)

ここで、(a1 + a2) ∈ VA であり、(b1 + b2) ∈ VB であるので、x+ yもまた VA の元と VB の元の和、VA∩B の
元となって閉じている。同様に、スカラー αについても

αx = α(a1 + b1) = αa1 + αa2 ∈ VA∩B

つまり、和空間 VA∩B はスカラー積と和について閉じているので、線形部分空間である。

さらに、直和とはこの和空間の特別な場合である。

定義 7.1. 直和の定義
線形部分空間が独立、つまり V の２つの線形部分空間 VA と VB が VA ∩ VB = {0}を満たすとき、和空間
VA∩B = VA + VB のことを

VA∩B = VA ⊕ VB

とかき、VA と VB の直和という。

例えば、二次元空間 R2 において、第二成分がゼロのベクトル v =

(
x1

0

)
の集合を V、第一成分がゼロ

のベクトル w =

(
0

x2

)
の集合をW とすると、R2 = V ⊕W であり、V とW の要素の和で空間全体の R2
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が構成されている。つまり、直和の場合は、以下のような分解が可能である。

定理 7.2. 　直和分解
２つの線形部分空間 VA と VB が直和 VA ⊕ VB ならば、任意の元 xを VA の元 aと VB の元 bとで

x = a+ b (a ∈ VA, b ∈ VB)

と表す方法は唯ひとつである。

■表す方法が 1つである事の確認 　仮に２つの方法で表せたとしてみる
仮に、VA ⊕ VB に含まれる任意の元 xが、以下のように２通りの方法で

x = a1 + b1 = a2 + b2 a1, a2 ∈ VA b1, b2 ∈ VB

と表せたとする。するとこの式を変形して

a1 − a2 = b2 − b1

ここで、この元を cとおく、つまり c = a1 − a2 = b2 − b1 とすると

c = a1 − a2 ∈ VA

c = b1 − b2 ∈ VB

つまり、cは VA にも VB にも含まれる
c ∈ VA ∩ VB

ここで、直和の定義より VA ∩ VB = {0}なので、c = 0。したがって、a1 = a2 であり、かつ b1 = b2 である。

このように元の空間 V が独立（VA ∩ VB = {0}であり共通部分がない）しており、その空間の要素が２つ
の部分集合の和として分解出来ることから、直和は、線形ベクトル空間の間の”一次独立のような概念”であ
る [2, p.45]といえる。

7.1.3 部分空間の生成元
次に、こうした部分空間を基底ベクトルから定めてみよう。次の定理は、生成元という重要な考え方であ
り、いくつかのベクトルから線形部分空間をつくる方法である。

定理 7.3. 線形部分空間を生成する　
以下のように、ベクトル空間 V に含まれる r 個のベクトル、v1, v2, · · · , vr の 1次結合全体の集合W を考
える。

W = {a1v1 + a2v2 + · · ·+ arvr}

このとき集合W は、V の部分空間になる。

線形部分空間である事を示すには、和とスカラー積について閉じている事を示せば良い。
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1. x1 + x2 ∈ W

x1 と x2 を空間W に含まれるの２つの要素とする。つまり

x1 = a1v1 + a2v2 + · · ·+ arvr , x2 = b1v1 + b2v2 + · · ·+ brvr

この要素の和は、
x1 + x2 = (a1 + b1)v1 + (a2 + b2)v2 + · · ·+ (ar + br)vr

なので、x1 + x2 もまた一次結合で表すことができるのでW の要素であり、x1 + x2 ∈ W

2. αx ∈ W

Rを実数の集合として、α ∈ Rかつ、x ∈ V とすると、

αx = αa1v1 + αa2v2 + · · ·+ αarvr

となり、αxもまた一次結合で表すことができるのでW の要素であり、x1 + x2 ∈ W

このような部分空間W を、a1, a2, · · · , arによって生成される部分空間*25であるといい、Span{a1, a2, · · · , ar}
と表し、生成元という。そして、a1, a2, · · · , ar を空間W の生成系という。

7.1.4 補部分空間
ついで、この生成元の考え方を用いて、線形部分空間の残り部分も線形部分空間になることを示そう。

定理 7.4. 補部分空間
ベクトル空間 U が V の線形部分空間であるとき、

U ⊕ Ũ = V

となる V の線形部分空間 Ũ が必ず存在する。この部分空間 Ũ を V における U の補部分空間という。

図 61のように、n次元ベクトル空間 V の中に、k 次元の部分空間 U が存在したとする。U は V の部分空
間なので n > k である。

V

U

dim V = n

dim U = k

n > k

e1 e 2 · · · ek ek+1 · · · en

U Ũ

V

U e1 e 2 · · · ek

図 61 部分空間と補部分空間

いま部分空間 U の基底を {e1, e2, · · · , ek}とすると、上位の空間 V には U の基底 {e1, e2, · · · , ek}では表
せない ek+1 が存在する。それを基底に加え、{e1, e2, · · · , ek, ek+1}としても k + 1 < nならば、まだその基

*25 または、a1, a2, · · · , ar によって張られる部分空間
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底では表せない ek+2 が存在する事になる。そのように部分空間 U の基底を基本にして、次々と合計が n個
になるまで新しい基底を加えていったもの

{e1, e2, · · · , ek, ek+1, · · · , en}

は元の空間 V の基底となっている。このとき

U の基底 {e1, e2, · · · , ek}

Ũ の基底 {ek+1, · · · , en}

は、{0}以外に交わりを持たない。何故ならば、もしあるベクトル xが両方の空間 U と (̃U)に属したとする。

x = a1e1 + a2e2 + · · ·+ akek

x = ak+1ek+1 + · · ·+ anen

と表せるので
x− x = a1e1 + a2e2 + · · ·+ akek − ak+1ek+1 − · · · − anen = 0

ここで、{e1, e2, · · · , en}は空間 V の基底なので線形独立であり、上式が成立するためには、a1 = a2 = · · · =
an = 0出なければならない。つまり、もし両方に属するベクトル xがあれば、それは x = 0でなければなら
ない。つまり

U ⊕ Ũ = V

このことを次元として表せば以下の公式のようになる。

公式 7.1. ベクトル空間 V の中に部分空間 U があり、さらに Ũ が U の補部分空間であるとき、

dim V = dim U + dim Ũ (7.1)
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7.2 線形写像の基本定理
行列 Aの列空間は、核と像の元要素で構成される� �

• 元空間 V は、KerAの要素 xk とKerAの補部分空間 Ṽ の要素 xṽ の和で構成される。

xv = xk + xṽ ただし xv ∈ V, xk ∈ Ker A, xṽ ∈ Ṽ

• 上記のように表された要素を行列 A によって写像すると、KerA の要素はゼロになるので、像
ImAは補部分空間を写像したものと同じである。� �

前節で部分空間に関する概念を準備したので、ここでは、図 62*26のように、n次元からm次元への線形写
像の構造を調べよう。

a11 a12 · · · a1n

a21 a22 · · · a2n

.

.

.

.

.

.

.
.
.

.

.

.

a 1 a 2 · · · a

x1

x2

.

.

.

xn

=

y1

y2

.

.

.

y

m × n n m
V Wn m

Image

mnm
m

m

図 62 m× n行列による写像のイメージ

7.2.1 線形写像の核と像の定義
まず、66ページの定義 5.2で定義したように、『行列 Aを、ベクトル空間 V からW への線形写像とした
とき、Ax によって移った先の空間を像 (Image)ImA と呼び、移った先が 0 となる元の集合 Ax = 0 を核
(Kernel)と呼ぶ』。図 63は、線形写像の核と像をしめす。

V W

0

(Kernel)

KerA

Ax

Ax

V W

(Image)

ImA

図 63 線形写像の核と像

この２つの空間、像と核はともに空間 V と空間W の線形部分空間となっている*27。

*26 この図は 68ページで使用した図
*27 この証明は、66ページで述べたのでここではふれない。
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7.2.2 Ker Aによる直和分解と Im Aの関係
Ker Aは、部分空間であり、112ページの定義 7.4のように、部分空間には必ずその補部分空間が存在する。

性質 7.1. Ker Aの補部分空間を Ṽ とすると、写像元の空間 V は、

V = Ker A⊕ Ṽ

というようにKer Aとその補部分空間に直和分解できる。

つまり、以下の式のように空間 V の任意のベクトル xv は、Ker Aのベクトル xk、その補部分空間のベク
トル xṽ によって以下のようにベクトルの和の形に分解する事ができるという事である。

xv = xk + xṽ ただし xv ∈ V, xk ∈ Ker A, xṽ ∈ Ṽ

ここで、空間 V から空間W への線形写像 ϕを考えよう。上記のように和で表された任意の要素 xv を写像 ϕ

で写像すると、核 (Kernel)の要素の写像は ϕ(xk) = 0なので
ϕ(xv) = ϕ(xk) + ϕ(xṽ)

= ϕ(xṽ)

となり像 (Image)空間は、核 (Kernel)の補部分空間を写像したものに他ならない。
つまり図 64 のように、元の空間は V = Ker A ⊕ Ṽ と直和分解され、その集合 V を ϕ で写像すると、

ϕ(Ker A)がゼロになるので、その像 (Image)は、ϕ(V ) = ϕ(Ṽ )になるという事である。

V

=Ker A

Ṽ

Ṽ

W̃

W

Im A(V ) = (Ker A) + (Ṽ )

V = Ker A ⊕ Ṽ

図 64 核による直和分解と像の関係

性質 7.2. 空間 V 上の Ker A の補部分空間 Ṽ を定義域に制限した写像 ϕ を考えると、線形写像
ϕ : Ṽ → Im Aは、単射（1対 1写像）となる。

何故ならば、ある xが空間 Ṽ に属しており、しかも ϕ(x) = 0であるような xは、Ṽ ∩Ker Aに属してい
る。しかし、補部分空間の定義 Ṽ ⊕Ker Aより、Ṽ ∩Ker A = {0}なので、空間 Ṽ に属し、かつ ϕ(x) = 0

であるような xはゼロしかない。このように KerA = {0}となる写像は、70ページの定理 5.1に示したよう
に、必ず単射（1対 1対応）になる。
この性質の意味は、空間 V から、余分なもの (Kernel A)を捨てて Ṽ を残すと、Im Aは変わらずに、写像

ϕを単射にする事ができるという事*28である。

*28 参考：石井 [2] p.48
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7.2.3 Ker Aによる直和分解と Im Aの関係の具体例
この事を具体的な事例で確認してみよう。以下のような二次元空間 V から二次元空間 V への線形写像

（y = Ax）について、ImAとKerAとの関係をみてみよう。(
y1
y2

)
=

(
1 −2
−1 2

)(
x1

x2

)
■像 (Image)と核 (Kernel)の関係 まず像 (Image)について調べてみる。行列 Aによって写像した結果のベ
クトル y は、行列 Aの列ベクトルが張る空間にある*29。この行列 Aの列ベクトルは、(1,−1)t、(−2, 2)t と
いう線形従属な２つのベクトルである。なので、その像 (Im A)は図 65の (a)のような直線になる。つまり、
この行列 Aによる写像は平面上の点を直線上に写す写像である。つぎに核 (Kernel)について調べてみよう。

Ker A

Im A

図 65 核と像の関係の具体例

核とは (
0
0

)
=

(
1 −2
−1 2

)(
x1

x2

)
を満たす点 (x1, x2)

t であり、以下の連立方程式を満たす点である。{
x1 − 2x2 = 0

−x1 + 2x2 = 0

これを解くと、x2 =
1

2
x1 という関係にある点は全て上式を満たす。つまり、(2, 1)t というベクトルのスカ

ラー倍は全て満たす事になる。なので核空間は、図 65の (b)のような直線になる。

■核とその補部分空間による直和分解 ついで、空間 V がKer Aとその補部分空間 Ṽ の直和 V = Ker A⊕Ṽ

として表される事を示そう。図 65の (c)のように、ある点 (1, 2)t は、Ker A上のベクトル (2, 1)t と補部分空
間 Ṽ 上のベクトルの和で表される。ここでは、簡便のために補部分空間を Im Aと同じ基底空間にとると*30(

1
2

)
=

(
2
1

)
+

(
−1
1

)
(7.2)

というように、Ker Aとその補部分空間のベクトル ṽ との和で表す事ができる。

*29 13ページ参照
*30 Ker A の補部分空間の基底は、必ずしも Im A の基底空間に取る必要はない。Ker A の基底と線形独立な基底ならばよい。し
かし、ここでは簡便になるので Im Aにとる事にする。
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この事は何を意味しているのだろうか。元々の空間 V が、Ker Aのベクトルとその補部分空間のベクトル
の和で以下のように表す事ができるという事である。

xv = xk + xṽ ただし xv ∈ V, xk ∈ Ker A, xṽ ∈ Ṽ

その事はつまり、図 66のように、KerAを補部分空間の基底にそって平行移動する事で元の空間 V ができあ
がっている事を意味する。そもそも、Kernelという言葉は、このように元々の空間 V をKerAで分割してい
る「果実の中核のようなもの」という意味である。

KerA

KerA

KerA

dim(V ) = 2 KerA = 1 dim(V ) = 3 KerA = 2dim(V ) = 2 KerA = 0

図 66 核 (Kernel)のイメージ

■補部分空間の写像 では、直和分解された空間 V のベクトルを行列 Aで写像してみるとどうなるだろうか。
式 7.2の両辺に行列 Aをかけると(

1 −2
−1 2

)(
1
2

)
=

(
1 −2
−1 2

)(
2
1

)
+

(
1 −2
−1 2

)(
−1
1

)
=

(
0
0

)
+ 3

(
−1
1

)
というように、Ker Aに属するベクトル (2, 1)t を行列 Aで写像した成分はゼロになり、その補部分空間の成
分 (−1, 1)t を行列 Aで写像した成分のみになる。特に、補部分空間の基底を Im Aの基底に取っておけば写
像の働きが簡単に示せる。たとえば、この行列 Aの場合なら、補部分空間の成分 (−1, 1)t を３倍しているだ
けになっている。このように元々の空間 V を、Ker Aとその補部分空間に直和分解しておけば、写像 Aは簡
単に表すことができる。
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7.3 次元定理
次元定理� �
m × n 行列 A について、n = dimKerA + dim ImA が成立する。これを線形代数の次元定理という。
この式は以下の２つの意味として解釈できる。

1. 行列 Aの列ベクトルが作る空間は、行列 Aの核 (KerA)と像 (ImA)によって構成される。

n = dimKerA+ dim ImA (7.3)

2. 元々の空間 V から核 (Kernel)分がつぶれて、残りが行列 Aによる像 (Image)である。

n− dimKerA = dim ImA (7.4)� �
■式 (7.3)の意味 式 (7.3)の意味は、元々の行列 Aの列ベクトルがなす空間が、「核 (Kernel)空間」と「像
(Image)の写像元の要素の空間」で構成されるという事である。

定理 7.5. m× n行列 Aによる空間 V から空間W への写像を考える。ImAの任意の元 yi には、必ず写
像元である xi が存在する。この任意の yi の元要素である xi と KerAの任意の元 xk1, xk2, · · · , xkk は線
形独立である。

証明には背理法をつかう。まず xi とKerAの任意の元 xk1, xk2, · · · , xkk が線形従属であると仮定すると、

xi = c1xk1 + c2xk2 + · · ·+ ckxkk

のように、xi を xk1, xk2, · · · , xkk の一次結合で表す事ができる。この式の両辺に行列 Aをかけると

Axi = A(c1xk1 + c2xk2 + · · ·+ ckxkk)

= c1Axk1 + c2Axk2 + · · ·+ ckAxkk

ここで、xk1, xk2, · · · , xkk は、KerAの要素なので、Axk1 = 0, Axk2 = 0, · · · , Axkk = 0となるので、
上記の式は

Axi = 0

しかしながら、yi は ImAの任意の元であり、yi = Axi である。これと Axi = 0とは矛盾する。なので、xi

とKerAの任意の元 xk1, xk2, · · · , xkk が線形従属ではなく、線形独立でなければならない。
つまり図 67のように、m× n行列 Aによって、n次元空間 V のベクトル xがm次元空間W のベクトル

y に写像されているとし、核空間の次元は dim(KerA) = k であり、像空間の次元は dim(ImA) = r である
とすると、元々の空間 V の任意のベクトル xを

x = (c1u1 + c2u2 + · · ·+ ckuk) + (ck+1v1 + ck+2v2 + · · ·+ ck+rvr) (7.5)

というように、KerAの k 個の基底 (u1, u2, · · · , uk)と、残りの r 個の基底 (v1, v2, · · · , vr)の一次結合で表
すことが出来るという事である。
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図 67 m× n行列の次元定理 n = k + r の説明

■式 (7.4)の意味 式 (7.4)　 n− dimKerA = dim ImAは、単に dimKerAを左辺に移項しただけである
が、その式の意味するところは異なった解釈が可能である。この式は視点を変えて、写像による像の側からみ
たと考えて良い。
写像された像の側からみれば、核 (Kernel)空間が 1つの点ゼロにつぶれているという事であり、写像 Aに
よって空間がどの程度つぶれるかという事を意味している。つまり、図 68のように、「元の n次元空間から、
KerAの次元分がぺちゃんこになって、残ったのが ImAの次元である」事を意味している。

V W

KerA
0

ImA

a
a KerA

ImA

KerA

dimV dimW

A
A

図 68 次元定理の説明

これを基底の一次結合でみてみるよう。式 (7.5)を行列 Aで写像すると

Ax = (c1Au1 + c2Au2 + · · ·+ ckAuk) + (ck+1Av1 + ck+2Av2 + · · ·+ ck+rAvr)

ここで、(u1, u2, · · · , uk)はKer 空間の基底ベクトルなので、Au1 = 0, Au2 = 0, · · · , Auk = 0となり

Ax = +(ck+1Av1 + ck+2Av2 + · · ·+ ck+rAvr)

というように、任意のベクトル xの像 Axの次元数は、元々の次元数 nから核空間の次元数 k を引いた残り、
n− k = r 個の独立なベクトルで表現できる。
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8 ユークリッド空間と内積
ベクトル空間には、加法とスカラー倍しか演算が定義されていないので、どちらのベクトルが長いとか、２
つのベクトルのなす角度と言った関係性は無視されている。ベクトル空間は、ベクトル通しの線形独立性のみ
を扱い、線形独立なベクトルの数（基底の次元）によってその構造を調べようとする抽象度の高い空間であ
る。なので、図 69のような２本のベクトル e1、e2 の違いを表現する手段をもっていない。

e1

e2

e2

e1

e1

e2

図 69 ２つのベクトルの角度や長さは区別されない

しかし、一般に私たちが思う座標は、長さや角度という幾何学的な概念を用いているし、そうしたベクトル
同士の関係を調べ、その空間の構造を調べたい事が多い。なので、ベクトル空間にこうした関係性を示す特徴
量を導入していこう。
関係性を表す特徴量の代表が内積である。ベクトル空間に内積を導入することで長さ（ノルム）や角度が定
められる。そのように幾何学的構造をもつ空間を内積空間、特にユークリッド空間と呼ぶ。また、ノルムを導
入する事で２つのベクトルの間の距離が定義できるので、結果として計量空間*31としても扱うことができる。

*31 「計量空間」(metric space) は一般には内積でなくても、距離（距離関数）が定義できれば「計量空間」として定義できる。
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8.1 内積の定義
内積の定義と性質� �
ゼロでない２つのベクトルを a、bとし、そのなす角度を θとするとき、内積は以下のように定義される。

a · b =< a, b >= |a||b| cos θ (8.1)

また成分で表現すれば以下のように、成分同士の積和になる。

< x, y >= x1y1 + x2y2 + · · ·+ xnyn (8.2)

これをベクトル表示すると

< x, y >=
(
x1 x2 · · · xn

)


y1
y2
...
yn

 = xty (8.3)

また２つのベクトルのなす角度が 90°ならば、cos θ = 0なので、< x, y >= 0の時は２つのベクトルは
直交すると言える。� �

8.1.1 内積の定義とそのイメージ
ここでは内積を定義し、そのイメージを物理的現象から掴んでおこう。

定理 8.1. 　内積の定義
以下の図のように、ゼロでない２つのベクトル a, bのなす角度を θ とするとき、以下のように定義される
ものを a,bの内積 (inner product)またはスカラー積 (scalar product)と呼ぶ。一般に、内積は a · bまた
は、< a, b >と表記される。

a · b =< a, b >= |a||b| cos θ

a

b

■内積と仕事量 内積は物理的な仕事の定義を考えると意味が理解しやすい。例えば、図 70のように、物体
に斜めの力 F を加えて、水平方向右に距離 sだけ動かしたときの仕事量を考えよう。物理的には、力 F が物
体にした仕事量W は、どれだけの力をどれだけの距離加えたか、つまり「力×距離」で定義される。
今、図 70のように力を斜め右上に加えているので、図のようにその力を水平方向と垂直方向に分解すると、
物体を移動させるために役立った力は F cos θのみであり、F sin θは移動に関しては実質貢献していない。な
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cosF

F
sinF

図 70 物理的な仕事の定義

ので仕事Wは、

W = s× F cos θ

= |s||F | cos θ

であり、まさに仕事Wという物理的概念を内積で表現できる事になる。

■内積とベクトルの直交 内積は、ベクトルの直交性と関連深い。内積の定義から

cos θ =
< x, y >

|x||y|

なので、２つのベクトルのなす角度が 90°ならば、cos θ = 0なので、

< x, y > = 0 なら２つのベクトルは直交
< x, y > = |x||y| なら２つのベクトルは平行

という事がいえる。

8.1.2 内積を成分表示する
ついで、内積が成分の積で表す事ができることを示そう。

■内積の線形性 まずは準備として、内積演算が線形性を持っている事を示す。演算が線形性を持っていると
いう事は、以下の２つの式が成立する事である。

< x1 + x2, y > =< x1, y > + < x2, y >

< αx1, y > = α < x1, y >

< x1 + x2, y >=< x1, y > + < x2, y >について確認しよう。図 71の (a)のように、

|x1 + x2| cos θ = |x1| cos θ + |x2| cos θ

が成立する。この両辺に |y|をかけると

|x1 + x2||y| cos θ = |x1||y| cos θ + |x2||y| cos θ

つまり
< x1 + x2, y >=< x1, y > + < x2, y >

< αx1, y >= α < x1, y >についても、図 71の (b)からすぐに導ける。
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y

図 71 内積演算は線形演算である

■内積の成分表示 内積演算が線形演算である事が確認でき、準備が出来たので内積を成分表示してみよう。
いま、以下のような２つのベクトル xと y があったとしよう。

x =


x1

x2

...
xn

 y =


y1
y2
...
yn


ここで、同じベクトルの内積は角度０、つまり cos θ = 1なので、< x, x >= |x||x| = |x|2 である。なので

|x+ y|2 =< x+ y, x+ y >

さらに内積の線形性を用いて右辺を展開すると

|x+ y|2 =< x+ y, x+ y >

=< x, x > +2 < x, y > + < y, y >

= |x|2 + 2 < x, y > +|y|2

この式を変形しよう。< x, y >を左辺に移項して

< x, y >=
1

2

{
|x+ y|2 − |x|2 − |y|2

}
ここで、|x+ y|2 を成分表示してやろう。

|x+ y|2 = (x1 + y1)
2 + (x2 + y2)

2 + · · ·+ (xn + yn)
2

= (x2
1 + x2

2 + · · ·+ c2n) + 2(x1y1 + x2y2 + · · ·+ xnyn) + (y21 + y22 + · · ·+ y2n)

= |x|2 + 2(x1y1 + x2y2 + · · ·+ xnyn) + |y|2

なので、上記の < x, y >=
1

2

{
|x+ y|2 − |x|2 − |y|2

}に当てはめると
< x, y >= x1y1 + x2y2 + · · ·+ xnyn
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というように成分同士の積和で表される事になる。さらに、これをベクトルで表せば

< x, y >=
(
x1 x2 · · · xn

)


y1
y2
...
yn

 = xty

■内積のブラ・ケット表記 内積の表記方法として量子力学等では、以下のブラケット（bra-ket） 表記を用
いる*32。

〈x | y〉

左側の 〈x|が ブラ（bra）、右側の |y〉が ケット（ket）と呼ばれる。この |y〉は「状態」を意味し、〈xは測定
をする為の「観測装置」を意味する。
例えば、量子力学では、物理系は |y〉のような「状態」で記述され、観測するときは、その状態に対応するブ
ラ 〈x| をかけて期待値や確率振幅を計算する。例えば、〈x|y〉は、観測されたときの「重なり具合（確率振幅）」
を表現しており、|y〉 が「状態」で 〈x| が「それを測るための観測の向き」となる。これは、ケットという状態
ベクトルに対して、ブラが状態ベクトルに作用してスカラーを返す線形写像を表していると解釈できる。

行列の各行をブラ（bra）で表すと

A =

(
a11 a12
a21 a22

)
=

(
〈a1|
〈a2|

)
この行列を、行ごとに分けて考えると：

A =

(
〈a1|
0

)
+

(
0

〈a2|

)
この分けた形は「行ベクトルを、どの行に置くかを示す基底ベクトル」と組にすると

1行目の成分
|e1〉〈a1| =

(
1
0

)(
a11 a12

)
=

(
a11 a12
0 0

)
2行目の成分

|e2〉〈a2| =
(
0
1

)(
a21 a22

)
=

(
0 0
a21 a22

)
なのでブラケット表記を使うと、以下のように行列は「基底×ブラ」の外積の和で書ける。

A = |e1〉〈a1|+ |e2〉〈a2|.

この行列 Aをベクトル xに適用してみる。

A | x〉 =
(
| e1〉〈a1 | + | e2〉〈a2

)
| x〉 =| e1〉〈a1 | x〉+ | e2〉〈a2 | x〉

*32 latexでは、⟨は、\langle と書き、⟩は \rangle と書く。また |は \midと書く
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ここで、〈a1|x〉と 〈a1|x〉はスカラーなので前に出して変形すると以下のようになる。

A | x〉 =
(
〈a1 | x〉

)
| e1〉+

(
〈a2 | x〉

)
| e2〉 =

[
〈a1 | x〉
0

]
+

[
0
〈a2 | x〉

]
=

[
〈a1 | x〉
〈a2 | x〉

]
=

[
a11x1 + a12x2

a21x1 + a22x2

]
この

(
〈a1 | x〉

)
の部分は、状態 xを観測装置 〈a1 |で観測するという解釈ができる。つまり、一つの状態 | x〉

を２つの観測装置 〈a1 |と 〈a2 |で観測して、それぞれの結果を各基底に定期追うした一次結合に移すと考え
られる。結果 Aをベクトル xに作用させると、行列 Aのブラ（行）とベクトルとの内積 〈a1 | x〉でスカラー
を作り、それを基底ベクトルに乗せて「行列×ベクトルの成分」ができる
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8.2 長さの概念の定義と内積
ここでは、長さの概念を数学的に正確に定義し、内積も抽象的な形で定義しなおす。ついで、その抽象的な
公準を満たす内積を < a, b >と定義したとき、|a| = √

< a, a >が長さの公理に当てはまる事を示そう。つま
り、内積から長さの概念を導く。

8.2.1 長さの概念と内積の概念の再定義
まずは長さの定義から行う。以下の公理を満たすものをノルム (norm)：L(x)と呼ぶ。これは長さの概念を
抽象化したものである。

公理 8.1. 　ノルムの公準

1. Vn の全ての元 xに対して、0 ≦ L(x) < ∞ （L(x) = 0 となるのは x = 0 のときのみ）
2. Vn の全ての元 xとスカラー αに対して、L(αx) = |α|L(x)
3. Vn の全ての元 xと yに対して、L(x+ y) ≦ L(x) + L(y)

このノルムの公準を満たすように L(x)を定めてやれば、「長さ」を定義できる。例えば、

x =

(
x1

x2

)
に対して L(x) = 3

√
|x1|3 + |x2|3

のような定義をしたとしたても、0 ≤ L(x) < ∞であり、L(αx) = |α|L(x)であり、L(x+ y) ≦ L(x) + L(y)

が成り立つので、「長さ」の定義として成り立つ。
このように長さの定義はひとつではない。しかし、一般に長さと言われるものは

|x| =
√
x1

2 + x2
2

で定義されるユークリッド的長さである。これは < x, x >= |x|2 の平方根であり、内積の定義から導入でき
るものである。
次に、内積そのものも、もう少し数学的に定義しておこう。数学的に定義すると、内積とは次の公準を満た
すものである。

公理 8.2. 　内積の公準　
Vn の全ての元 x1、x2、y と、実数 Rの元 αについて、以下の３つが成立する。

1. 線形性：< x1 + x2, y >=< x1, y > + < x2, y >　かつ、< αx1, y >= α < x1, y >

2. 可換性：< x, y >=< y, x >

3. 正値性：< x, x >≧ 0 （等号は x = 0の時のみに成立する）

前の節では、内積を < x, y >= |x||y| cos θと定義して、その性質として線形性（< x1 + x2, y >=< x1, y >

+ < x2, y >　かつ、< αx1, y >= α < x1, y >）を導いたが、全く逆に上記のような性質を満たすものを内
積として定義する事ができる。そのように定義していくと、あるベクトル xの長さを、|x| = √

< x, x >と定
めたのがユークリッドの長さであると定義できるわけである。
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8.2.2 内積で距離を表す
内積を < a, b > としたとき、|a| =

√
< a, a > が距離をあらわす。このことを確認するには、|a| =

√
< a, a >が距離の公準 8.1の 1～3を満たす事が確認できればよい。公準 8.1の 1の 0 ≦ L(x) < ∞は、内
積の公準 8.2の 3の < x, x >≧ 0 より明らか。また、公準 8.1の 2の L(αx) = |α|L(x)は、

|λa| =
√

< λa, λa > = |λ|
√
< a, a > = |λ||a|

なので成立する。最後の公準 8.1の 3の L(x+ y) ≦ L(x) + L(y)は三角不等式と言われる公式であり、これ
については、シュワルツ (Schwarz)の不等式を用いて確認しよう。

定理 8.2. Schwarzの不等式
R2 の任意のベクトル a、bに対して、次の式が成り立つ。

| < a, b > | ≦ |a||b| (8.4)

■シュワルツ (Schwarz)の不等式 この式を幾何的に考えると、以下の図 72のようにベクトル aと bのなす
角を θ とすると、−1 ≦ cos θ ≦ 1となるので、< a, b >= |a||b| cos θ は

−|a||b| ≦ < a, b > ≦ |a||b|

となり、| < a, b > | ≦ |a||b|であることは当然である。ここでは、この式を代数的に解いてみよう。

a

b

a b

< a b> a b

a

b

a b

< a b>

a

b

a b

< a b> a b

図 72 aと bのなす角度と Schwartzの不等式

ベクトル aと bによって基底される平面の任意のベクトルを a + tbとおいて、このベクトルの長さを調べ
よう。長さは |a+ tb| =

√
< a+ tb, a+ tb >なので、両辺を二乗して展開すると

|a+ tb|2 =< a+ tb, a+ tb >=< a, a > +2t < a, b > +t2 < b, b >

= |a|2 + 2 < a, b > t+ |b|2t2
(8.5)

この式を tの二次式とみて最小値を求めてみよう。式 8.5を tで微分してゼロとおくと

2|b|2t+ 2 < a, b >= 0

より最小値は
t = −< a, b >

|b|2
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この値を先の 8.5に代入すると

|a+ tb|2 = |a|2 − 2
< a, b >2

|b|2
+

< a, b >2

|b|2

=
1

|b|2
(|a|2|b|2− < a, b >2)

一方、この |a+ tb|2 は、aと bとで作られる平面上の任意のベクトルの二乗なのでゼロ以上であり負にはなら
ないので、

|a|2|b|2− < a, b >2≧ 0 であり |a|2|b|2 ≧< a, b >2

なので、両辺の平方をとって、−|a||b| ≦ < a, b > ≦ |a||b|となる。つまり、
| < a, b > | ≦ |a||b|

となり Schwartz の不等式が確認できた。ちなみに、ここで代数的に求めた t は幾何的にも意味があり、
(a+ tb) ⊥ bの場合の tを求めている事になる。なぜなら、図 73のように、ベクトル aを射影した点 P と原
点を結ぶベクトル O⃗P は、

O⃗P = |a| cos θ × b

|b|
=

< a, b >2

|b|2
b

a

b

cosa
< a b>

b

cosa
b

b < a b>

b
b

a
< a b>

b
b

P

O

Q

図 73 (a+ tb) ⊥ bとなるベクトルを求める

求めたいベクトル O⃗Qは、
O⃗Q = a− < a, b >2

|b|2
b

である。つまり、ここで求めた tの二次式を最小にする tはまさに、図 72の aと bが垂直な場合である。

■三角不等式を確認する 　さて準備が出来たので、次に内積を用いて距離を |a| = √
< a, a >と定義したと

きに、三角不等式と言われる距離の公準 8.1の 3の L(x+ y) ≦ L(x) + L(y)が成立する事を確認しよう。

定理 8.3. 三角不等式
R2 の任意のベクトル a、bに対して、次の式が成り立つ。

|a+ b| ≦ |a||b| (8.6)

三角不等式を確認するには、Schwartz の不等式（定理 8.2）を利用する。まずは、内積による距離 |a| =
√
< a, a >を用いて、|a+ b|を以下のように展開する。

|a+ b|2 =< a+ b, a+ b >=< a, a > +2 < a, b > + < b, b >

= |a|2 + 2 < a, b > +|b|2
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ここで、| < a, b > | ≦ |a||b|なので、上の式の < a, b >を、より大きな |a||b|に置き換えて

|a+ b|2 ≦ |a|2 + 2|a||b|+ |b|2

≦ (|a|+ |b|)2

すべて負でないので、両辺の平方をとれば、|a+ b| ≦ |a||b|となり三角不等式が確認できた。
以上のように、公準 8.2を満たす内積 < a, b >を定義し、それをもって距離 |a| = √

< a, a >を定義してや
れば、それが距離の公準 8.1の 1～3を満たす事が確認できた。
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8.3 正規直交系

定義 8.1. 正規直交系の定義
S = {a1, a2, · · · , an}がベクトル空間 Rの部分集合で以下の２条件を満たすとき、S を Rにおける正規直
交系という。

1. S のどのベクトルも長さが 1である
a ∈ S ⇒ |a| = 1

2. S の異なるどの２つのベクトルも直交する

a1, a2 ∈ S ⇒< a1, a2 >= 0

これをクロネッカーのデルタ*33を用いて表すと

< ai, aj >= δij (i, j = 1, 2, · · · , n)

と書ける。こうした正規直交系のベクトルはお互いに線形独立でもある。

定理 8.4. 正規直交系のベクトルは互いに線形独立である
0でない k 個のベクトル a1, a2, · · · , ak のどの２つも直交するならば、a1, a2, · · · , ak は線形独立である。

この事を確認しよう。線形独立である事を確認するには、5ページの定義 2.2のように、もしあるスカラー
c1, c2, · · · , ck によって

c1a1 + c2a2 + · · ·+ ckak = 0

と表した時、c1 = c2 = · · · = ck = 0になる事が示せれば良い。そこで、この両辺と ai との内積をとると

c1 < a1, ai > + · · ·+ ci < ai, ai > + · · ·+ ck < ak, ai >= 0

左辺のうち < ai, ai >以外の項は、これらのベクトルが直交しているので 0となる。したがってこの式は

ci < ai, ai >= 0 (i = 1, · · · , k)

となる。ところが、正規直交系のベクトルは < ai, ai >= |ai|2 6= 0なので、ci = 0でなければならない。こ
の事が全ての iについて成り立つので、c1 = c2 = · · · = ck = 0でなければならない。つまり、これらは線形
独立である。
また特に、n個のベクトルの組 {a1, a2, · · · , an}が n次元ベクトル空間 R の基底で、しかも正規直交系を
なすならば、それらを正規直交基底と呼ぶ。

*33 クロネッカーのデルタ (Kronecker delta)とは、以下のような関係を表す記号で、いろいろな場面で有用である。例えば、単位行
列は (I = δij) と書けたり、ｎ次元直交座標の基底ベクトルの内積は、< ei, ei >= δij と書ける。

δij =

{
1 (i = j)

0 (i ̸= j)
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定理 8.5. 座標値は各基底ベクトルとの内積で求まる
n個のベクトルの組 {e1, e2, · · · , en}が n次元ベクトル空間 R の正規直交基底であるとすると、ベクトル
空間 Rの任意のベクトル xは

x = x1e1 + x2e2 + · · ·+ xnen

と表すことができ、その座標値 {x1, x2, · · · , xn}は、ベクトル xと各基底ベクトルとの内積 xi =< x, ei >

で求める事が出来る。

座標値が、xi =< x, ei > で求める事が出来る事を確認しよう。実際に x と ei の内積を求めると、
< ei, ei >= δij（i = j なら 0、i 6= j なら 1）なので、以下のように、< ei, ei >以外の項はゼロになり、ei の
成分が求められる。

< x, ei > =< x1e1 + x2e2 + · · ·+ xnen, ei >

= x1 < e1, ei >︸ ︷︷ ︸
0

+ · · ·+ xi < ei, ei >︸ ︷︷ ︸
1

+ · · ·+ xn < en, ei >︸ ︷︷ ︸
0

= xi

つまり、{e1, e2, · · · , en}が正規直交基底なら、任意のベクトル xの座標値を求めるには、ベクトル xと各基
底ベクトルの内積を取ればよい。ちなみに、ベクトル xと各基底ベクトルの内積は |ei| = 1なので

< x, ei >= |x||e1| cos θ = |x| cos θ

となり、図 81のように、各座標系へ下ろした垂線の足の長さを意味している。これをベクトル xを基底ベク
トルへ射影した長さといい、基底ベクトルをその長さ倍したもの < x, ei > ei を射影ベクトルという。

e

x

O

e

e

< x >e cosx

e

e

< x >e cosx

図 74 正規直交基底ベクトルへの射影が座標値
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8.4 シュミットの直交化法
n次元計量ベクトル空間 V は必ず正規直交基底を持つことが出来る。次に、n個の線形独立なベクトルか
ら正規直交基底を作る方法を示そう。

8.4.1 シュミットの直交化
シュミットの直交化� �
n次元計量ベクトル空間 V の n個の基底 {a1, a2, · · · , an}に対して、次の式で定まる {e1, e2, · · · , en}は
正規直交基底となる。この方法をグラム・シュミットの直交化法 (Gram-schmidt orthonormalization)

と呼ぶ。

e1 =
a1
|a1|

e2 =
a′2
|a′2|

ただし、 a′2 = a2− < e1, a2 > e1

e3 =
a′3
|a′3|

ただし、 a′3 = a3− < e1, a3 > e1− < e2, a3 > e2

· · ·

en =
a′n
|a′n|

ただし、 a′n = a2 −
n−1∑
k=1

< ek, an > ek

� �
シュミットの直交化の手順の原理は先に述べたベクトルへの射影である。つまり、図 75のように、線形独
立は２つのベクトル a1 と a2 をとってきて、a2 ベクトルを a1 ベクトルに射影したベクトルを a′1 とし、次に
a2 − a′1 を求めれば、新たに直交する２つのベクトル a′1 と a′2 を作ることができる。これを繰り返すのである。

a

a

a
′

a
′

a a
′

図 75 ２つのベクトル a1 と a2 を直交させる

■シュミットの直交化の手順 もう少し詳しく手順を説明しよう。

1. まず a1 をもってきて、これを長さを１に正規化して e1 とする

e1 =
a1
|a1|

e

a

2. 次に、a2 をもってきて、a′2 = a2 − αe1 とおき、この a′2 が e1 と直交するように α を定める。
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a′2 と e1 の内積をとると直交するので

< e1, a
′
2 >=< e1, a2 > −α < e1, e1 >= 0

ここで < e1, e1 >= 1なので

α =< e1, a2 >

のように αを定めると、a′2 と e1 は直交する。これを正規化して
e2 とする。つまり

e2 =
a′2
|a′2|

ただし、 a′2 = a2− < e1, a2 > e1

a

a

e

a
′

a a
′

e

3. さらに、a3 をもってきて、a′3 = a3 −β1e1 −β2e2 とおいて、e1 と e2 とに直交するように a′3 を定める。

a′3 と e1 および e2 との内積をとると

< e1, a
′
3 >=< e1, a3 > −β1 < e1, e1 > −β2 < e1, e2 >= 0

< e2, a
′
3 >=< e2, a3 > −β1 < e2, e1 > −β2 < e2, e2 >= 0

ここで、< e1, e1 >= 1、< e1, e2 >=< e2, e1 >= 0なので

β1 =< e1, a3 >

β2 =< e2, a3 >

のように β1、β2 を定めると、a′3 は e1 と e2 とに直交する。

a
′

3
= a3 − 1e1 − 2e2

a

e

e

これを正規化して

e3 =
a′3
|a′3|

ただし、 a′3 = a3− < e1, a3 > e1− < e2, a3 > e2

4. 以下、同様にして、e4, · · · , en を求めるれば、空間 V の n個の基底 {a1, a2, · · · , an}を元に、正規化
直交基底 {e1, e2, · · · , en}を作り出す事ができる。

■具体例 具体的な事例でシュミットの直交化法を確認しよう。

事例 8.1. シュミットの直交化法を用いて、次の線形独立なベクトル a1、a2、a3 から正規直交基底を作れ。

a1 =

1
1
1

 , a2 =

1
2
3

 , a3 =

1
3
2



まずは e1 を求めよう。|a1| =
√
3より、長さを１に正規化すると

e1 =
1√
3

1
1
1


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ついで、e2 を求めよう。

a′2 = a2− < e1, a2 > e1 =

1
2
3

− 6√
3
· 1√

3

1
1
1

 =

1− 2
2− 2
3− 2

 =

−1
0
1


|a′2| =

√
2なので長さ１に正規化すると

e2 =
1√
2

−1
0
1


最後に、e3 を求めよう。

a′3 = a3− < e1, a3 > e1− < e2, a3 > e2

=

1
3
2

− 6√
3
· 1√

3

1
1
1

− 1√
2
· 1√

2

−1
0
1

 =

1
3
2

−

2
2
2

− 1

2

−1
0
1

 =
1

2

−1
2
−1


長さを１に正規化するために、まず長さを求めると、

|a′3| =
√

1

4
(1 + 4 + 1) =

√
6

4
=

√
6

2

なので、

e3 =
2√
6
· 1
2

−1
2
−1

 =
1√
6

−1
2
−1


以上により、a1、a2、a3 から作った正規直交基底をなすベクトルは

e1 =
1√
3

1
1
1

 , e2 =
1√
2

−1
0
1

 , e3 =
1√
6

−1
2
−1


ちなみに、上では a1 からシュミットの直交化を施したが、a2 から行う事もできる。その場合は

e1 =
1√
14

1
2
3

 , e2 =
1√
21

 4
1
−2

 , e3 =
1√
6

−1
2
−1


となり、別の正規直交基底になる。つまり、n次元計量空間には必ず正規直交基底を作る事ができるが、その
正規直交基底は 1つではなく、任意に設定する事ができる。
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8.5 直交行列について
列ベクトルが正規直交基底で出来ている n次元の正方行列 Aは直交行列と呼ばれる行列である。この行列
の n個の列ベクトルは全て長さが 1で、互いに直交するので、

− a1 −
− a2 −

...
− a1 −


 | | |
a1 a2 · · · an
| | |

 =


1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1


つまり、AtA = I という性質をもっている。この行列による写像が何を意味しているかを見ていこう。

直交変換� �
正方行列 Aが直交行列であれば、行列 Aによる写像には、以下のような特徴がある。

• ２つのベクトルのなす角度を変えない写像である。
• ベクトルの長さを変えない写像である。
• 行列 Aによる写像は図形を合同な図形に写像する。

このような直交行列による写像を直交変換という。� �
■直交行列の定義と性質 　まずは直交行列を定義してその性質を整理しておこう。

定義 8.2. 直交行列の定義
n次正方行列 Aが

AtA = I (8.7)

を満たすとき、行列 Aを直交行列という。

この定義より以下の事がいえる。

性質 8.1. 直交行列の性質
Aが直交行列なら

At = A−1 (8.8)

|A| = ±1 (8.9)

AAt = I (8.10)

式 8.8は AtA = I より明白である。では、式 8.9を確認しよう。まず、定義から |AtA| = |I| = 1。ここで、
60ページの節 4.7で述べたように |A| = |At|なので、|AtA| = |A|2 = 1となる。なので |A| = ±1である。
また、AtA = I が成立するならば、AAt = I も成立する。何故ならば、Aは逆行列を持つので正則であり

AtA = I の左から Aをかけた AAtA = Aに右から A−1 をかけると、AAt = I となるからである。
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■直交行列による写像は長さも角度も保存する 　次に直交行列による写像を考えよう。

性質 8.2. 直交変換の性質
直交行列 Aによる写像は、ベクトルの長さを変えない。つまり

|Ax| = |x| (8.11)

また、任意の２つのベクトル x、y のなす角度を変えない。つまり

< Ax,Ay >=< x, y > (8.12)

まず直交行列 Aによってベクトルを写像すると Axとなる。これが xと長さが変わらない事をしめそう。

|Ax|2 =< Ax,Ax >= (Ax)t(Ax) = xtAtAx

ここで AtA = I より
|Ax|2 = xtx = |x|2

なのでベクトルの長さを変えない。また、逆にベクトルの長さを変えない行列を直交行列と定義する。つま
り、< Ax,Ax >= xtAtAx = xtxが成り立つとして、xt(AtA − I)x = 0が任意の xについて成り立つ事か
ら、AtA = I を導いてもよい。
では次に、２つのベクトル x、y を直交行列 Aで写像しても、その角度が変わらない事を示そう。ベクトル
のなす角度は

cos θ =
< x, y >

|x||y|

である。ここで、Aによる写像はベクトルの長さを変えないので、|x||y| = |Ax||Ay|であり、< Ax,Ay >=<

x, y >が示せればよい。これも AtA = I である事を用いれば

< Ax,Ay >= (Ax)tAy = xtAtAy = xty =< x, y >

となるので、直交行列による写像は、ベクトルの長さも角度も変えないという事が判る。

■直交行列による写像は合同変換である 　直交行列による写像は長さも角度も変えない。また当然ながら
A0 = 0なので、原点を動かさない写像である。このようにベクトルの長さ、ベクトル同士のなす角度を変え
ず、原点も移動しない変換を合同変換と呼ぶ。このように図形を合同なまま変換するものには図 76のように
回転変換と鏡映変換がある。

e

e

e

e

e

e e

e

図 76 合同変換には回転と鏡映がある
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鏡映変換は表と裏をひっくり返す変換であり、回転のみでは実現できない事がわかるであろう。また回転と
鏡映の違いは Aの行列式の違いで判る。

回転 |A| = 1

鏡映 |A| = −1
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8.6 シュミットの直交化と QR分解
A = (a1, a2, · · · , an) とするとき、a1, a2, · · · , an から、 Gram-Schmidt の直交化を行って正規直交基底

q1, q2, · · · , qn を作る計算は、行列 Aの QR分解を求めていることになる。
QR分解� �
行列 Aを正則行列とするとき、直交行列 Qと、上三角行列 Rで

A = QR

満たすものが存在する。特に Rの対角成分は正であるように取ることができ、そういうものに限ると分
解は一意的である。これを Aの QR分解と呼ぶ。� �

 a′1 a′2 · · · a′n

 =

 a1 a2 · · · an




1 α12 α13 · · · α1n

0 1 α23 · · · α2n

0 0 1 · · · α3n

...
...

...
. . .

...
0 0 0 0 1



a1 =

1
1
1

 , a2 =

1
2
3

 , a3 =

1
3
2


a′1、a′2、a′3 を a1、a2、a3 で表してみよう。まず

a′1 = a1 =

1
1
1

 (8.13)

とおく、ついで a′2 を求めると、|a′1| =
√
3であり、< a′1, a2 >= 6なので

a′2 = a1 −
< a′1, a2 >

|a′1|
· a′1
|a′1|

= a2 − 2a′1

a′1 = a1 なので、

a′2 = a2 − 2a1 =

1
2
3

− 2

1
1
1

 =

−1
0
1

 (8.14)

a′3 は < a′1, a3 >= 6、< a′2, a3 >= 1、|a′2| =
√
2

a′3 = a3 −
< a′1, a3 >

|a′1|
· a′1
|a′1|

− < a′2, a3 >

|a′2|
· a′2
|a′2|

= a3 −
6√
3
· 1√

3
a1 −

1√
2
· 1√

2
a′2 = a3 − 2a1 −

1

2
a′2
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ここで、a′2 = a2 − 2a1 なので

a′3 = a3 − 2a1 −
1

2
(a2 − 2a1) = a3 −

1

2
a2 − a1

=

1
3
2

− 1

2

1
2
3

−

1
1
1

 =

−1/2
1

−1/2

 (8.15)

この３つの式（式 8.13～式 8.15）をまとめると、a′1、a′2、a′3 を以下のように a1、a2、a3 で表す事ができる。

a′1 = a1

a′2 = a2 − 2a1

a′3 = a3 −
1

2
a2 − a1

これを行列で表現すると以下のように、元のベクトルを列ベクトルとする行列 Aと上三角行列（これを N と
表記する）の積になる。 a′1 a′2 a′3

 =

 a1 a2 a3

 1 −2 −1
0 1 −1/2
0 0 1

 これを、A′ = AN とおく

さらに、q1、q2、q3を求める為には、a′1、a′2、a′3をそれぞれの長さで割れば良い。それぞれの長さは、|a′1| =
√
3、

|a′2| =
√
2、|a′3| =

√
6/2なので、 q1 q2 q3

 =

 a′1 a′2 a′3




1√
3

0 0

0 1√
2

0

0 0 2√
6

 これを、Q = A′D とおく

この２つの式、A′ = AN と E = A′D を変形して行こう。まず、上三角行列の行列式は対角成分のかけ算で
あり*34、N の対角成分は必ず 1 になるので逆行列は |A| 6= 0*35。なので逆行列を持つ。その逆行列を N−1

とすると A′ = AN の両辺に逆行列をかけて

A = A′N−1

また、対角行列 D の逆行列はそれぞれの対角成分の逆数であり、これを D−1 とすると、E = A′D より

A′ = QD−1

この２つの式から、
A = QD−1N−1

となる。この例の値を求めてみよう。まずは Qを求めると、Q = A′D なので

Q =

 1 −1 −1/2
1 0 1
1 1 −1/2




1√
3

0 0

0
1√
2

0

0 0
2√
6

 =


1√
3

− 1√
2

− 1√
6

1√
3

0
2√
6

1√
3

1√
2

− 1√
6


*34 59ページの式 4.14
*35 55ページ参照
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ついで、

D−1N−1 =


√
3 0 0

0
√
2 0

0 0

√
6

2


 1 2 2

0 1
1

2
0 0 1

 =


√
3 2

√
3 2

√
3

0
√
2

√
2

2

0 0

√
6

2


この D−1N−1 を Rとおけば、

A = QR =


1√
3

− 1√
2

− 1√
6

1√
3

0
2√
6

1√
3

1√
2

− 1√
6




√
3 2

√
3 2

√
3

0
√
2

√
2

2

0 0

√
6

2


というように、行列 Aを直交ベクトル Qと上三角行列 Rの積に分解できる。
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8.7 連続関数の内積とフーリエ変換
126ページで述べたように、内積及びノルムは内積の公準 8.2及びノルムの公準 8.1を満たす。逆にこれら
の公準を満たすように定義してやれば、内積・ノルムとして扱える。
そこで、以下のように内積・ノルムを定義してやると、連続関数の内積とノルムが定義できる。それによっ
て連続関数にも、f(x)と g(x)の距離や f(x)と g(x)のなす角度などの概念を導く事ができる。

定義 8.3. 連続関数の内積
区間 [a, b]の連続関数 f(x), g(x)に対して、内積を以下のように定義する。

< f, g >=

∫ b

a

f(x)g(x) dx (8.16)

■公準を満たす事を確認しよう 式 8.16が内積の公準を満たす事を確認しよう。内積の公準は

1. 線形性：< x1 + x2, y >=< x1, y > + < x2, y >　かつ、< αx1, y >= α < x1, y >

2. 可換性：< x, y >=< y, x >

3. 正値性：< x, x >≧ 0 （等号は x = 0の時のみに成立する）

まず線形性は、積分演算が線形演算である事*36つまり、以下の２つの式が成立する事から明白である。∫ b

a

{f1(x) + f2(x)}g(x) dx =

∫ b

a

f1(x)g(x) dx+

∫ b

a

f2(x)g(x) dx∫ b

a

{αf(x)}g(x) dx = α

∫ b

a

f(x)g(x) dx

また、互換性も以下の式が成立する事から明白である。∫ b

a

f(x)g(x) dx =

∫ b

a

g(x)f(x) dx

さらに、正値性も ∫ b

a

f(x)2 ≧ 0

が成立するので満たす。また関数が連続関数なので、< f, g >= 0となるのは区間 [a, b]にて f(x) = 0の時の
みである。

*36 そもそも積分の線形性は、微分演算の線形性から導かれる。つまり、F (x)、G(x)を f(x)、g(x)の原始関数とし微分可能である
とすると以下の２つの式が成立する。

d

dx
{F (x) +G(x)} =

d

dx
F (x) +

d

dx
G(x),

d

dx
{αF (x)} = α

d

dx
F (x)

ちなみに、微分の線形性は以下の微分の定義式に当てはめれば簡単に確認できる。
d

dx
f(x) = lim

h→0

f(x+ h)− f(x)

h
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以上のように式 8.16の定義は、内積の公準を満たすので連続関数の内積として定義できる。また、このよ
うに内積を定義してやれば、連続関数のノルムを以下のように定義できる。

定義 8.4. 連続関数のノルム
区間 [a, b]の連続関数 f(x), g(x)に対して、ノルムを以下のように定義する。

|f | =

√∫ b

a

f(x)2 dx (8.17)
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9 固有値と固有ベクトル
行列 Aの本質的な性質とでも言うべきものが Aという行列そのものに存在する。その特徴的な性質こそが
固有値と固有ベクトルである。結論を先に言えば、「行列 Aの作用によって方向が変わらないベクトル」が固
有ベクトルであり、それは行列 Aに特有のものである。その固有ベクトルを座標軸にした表現をしてあげる
事によって、行列 Aの作用が簡単になり、どんな性質の作用なのかを考察する上で非常に見通しが良くなる。
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9.1 固有値・固有ベクトルとは何か？
ここでは、まず固有値・固有ベクトルという概念を直感的・幾何学的に導入する。固有値・固有ベクトルは
正方行列について定義されている。なぜ非正方行列には定義できないかというと、非正方行列の場合に問題に
なるのは「次元」である。たとえば A ∈ Rm×n のような非正方行列の場合は、x ∈ Rn、でも Ax ∈ Rm となっ
て、Ax = λxの右辺の λx は Rn、左辺の Ax は Rm となり、 両辺の次元が異なり成立しないからである。

この節では、2次の正方行列 Aの作用をみながら検討していく事にする。

固有値・固有ベクトルの働き� �
固有ベクトルとは方向の変わらないベクトルである 　式 y = Axを、行列 Aによってベクトル xがベク

トル y に写像されたと考える。その時、固有ベクトルとは写像 Aによって方向が変わらないベク
トルの事である

固有ベクトルを座標軸にとれば作用が簡単にイメージできる あるベクトルに行列 A を作用させた結果
は、その点を各固有ベクトルの方向に分解し、それぞれの成分を固有値倍して、合成した点に移さ
れる事になる。� �

9.1.1 固有ベクトルとは方向の変わらないベクトルである
行列をあるベクトルを他のベクトルに変換する作用素と考える。その時ある行列 Aが、xy 平面上の点をど
こに移すかを考えよう。

行列 Aを A =

(
3 2

2 3

)
とすると、図 77のように、黒点が赤点に移動する。
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図 77 行列 Aによってそれぞれの点が何処に移るか

図 77の緑の点線（R方向、S方向）上の黒点に注目して欲しい。この線上の点は原点からの方向の延長線
上に伸び縮しているだけである。つまり、R方向（ベクトル (1, 1)の整数倍)と S方向（ベクトル (−1, 1)の
整数倍）は、その方向を変えずに、それぞれ５倍と１倍されている。
このように行列 Aによる変換によって、

1. 方向が変わらないベクトルを固有ベクトルという
2. その伸び縮の倍率を固有値という

つまり、ある xをベクトルとし、行列 Aでベクトル xを変換した結果が以下のように、ベクトル xの定数
倍で表せるという事である。

Ax = λx (9.1)

この時、λを行列 Aの固有値、xを行列 Aの固有ベクトルと言う。

このような固有ベクトルを座標軸とする*37と、一見複雑に見えてる行列 Aによる写像の作用を、非常に簡
単に表す事ができる。

*37 ある一時独立なベクトルを座標軸とする事を既定とすると表現する場合がある
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9.1.2 固有空間で表すと行列の作用が簡単にイメージできる
固有ベクトルを座標軸にとってあげて、全てベクトルをその新しい座標軸で表してみよう。図 78は、さき
の行列 Aによって、点 x = (1, 2)が点 y = (7, 8)に移っている様子である。

x =

→

xs

→

x r

→

y r

y =

図 78 固有ベクトルの方向に分解して合成する

図 78のように、点 xを R方向、S方向という固有ベクトルの方向に分解する。つまり −→x = −→xr +
−→xs とす

る。そうすると、xの像 y は、−→xr の５倍と −→xs の１倍を加えたものになる。つまり、−→y = 5−→xr +
−→xs というよ

うに簡単になるのである。

あるベクトルに行列 Aを作用させた結果は、その点を各固有ベクトルの方向に分解し、それぞれの成分を
固有値倍して、合成した点に移される事になる。

と言うことは、この固有ベクトルを座標軸にとってあげれば、一見複雑に見える行列による作用を簡単に表
現することが出来るはずである。次の節では、その事を調べてみよう。
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9.2 固有ベクトルを基底にした世界でベクトル・行列を表現する
固有ベクトルを基底にしてベクトル・行列を表すと簡単に表現できる� �

1. 固有ベクトルを座標軸とする表現をすれば、ベクトル xは、x′ = P−1xと表せる。
2. 固有ベクトルを座標軸とする表現をすれば、Aという写像は、P−1AP と表現できる。
3. さらに P−1AP は以下のように簡略化して表現できる。

P−1AP = Λ =

λ1 0
. . .

0 λn


4. このように行列を簡単な対角行列に変換する事を対角化と呼ぶ。� �

9.2.1 固有ベクトルを基底にしてベクトルを表現する
では、具体的にある点 xを行列 Aの固有ベクトルを基底とした新しい座標軸で表すとするとどのように表
現されるかを調べよう。
いくつか準備をしよう。まず、行列 Aを n次の正方行列とする。そして、任意のベクトル xがある基底の
元で

x =

x1

...
xn


と表されているとする。さらに、行列 Aの固有ベクトルを p1, · · · , pn とし、それらをまとめて

P =

 | |
p1 · · · pn
| |


と書くことにする*38。
さて、固有ベクトルを基底としたときにベクトル xがどのように表現されるかを考えよう。当然、同じベク
トルでも基底を変えると表現が変わる。そして、固有ベクトルを基底として xを表現した時に

Px′ =

 | |
p1 · · · pn
| |


x′

1
...
x′
n


というように表現されたとしよう。この Px′ が xと同じものなので

x = Px′

後で述べるが、相異なる固有値に対応する固有ベクトルはお互いに線形独立である（定理 9.1）。なので、この
行列 P は逆行列を持つので

x′ = P−1x

*38 この固有ベクトルを横に並べた行列 P をモードマトリクスと呼ぶ事がある。
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今度は、y = Axの y を考えよう。これもまったく同様に

Py′ =

 | |
p1 · · · pn
| |


y′1

...
y′n


というように表現でき、

y = Py′

y′ = P−1y

となる。

9.2.2 固有ベクトルを基底にして行列を表現する
では次に、行列 Aそのものを新しく Aの固有ベクトルを基底軸として表すとどのような表現になるかを調
べよう。元の基底軸上での y = Ax という変換があるとして、これを新しい基底軸上で表現すればよいので
ある。
まず、xと y を新しい基底軸での表現でかくと、x = Px′ であり、y = Py′ である。なので、y = Axに、
それぞれ x = Px′ と y = Py′ を代入すると

Py′ = APx′

この両辺に左から P−1 をかけると、
y′ = P−1APx (9.2)

となる。これは 99ページのコラムに示した相似変換のひとつの特殊な事例（対角化）である。

x = Px′x′
= P−1x y = Py ′y ′

= P−1y

x ′ y ′

x y
A

P−1AP

図 79 固有ベクトルを基底に取った世界でのベクトルと行列の表現

以上をまとめると、図 79のように

1. 固有ベクトルを座標軸とする表現をすれば、ベクトル xは、x′ = P−1xと表せる。
2. 固有ベクトルを座標軸とする表現をすれば、Aという写像は、P−1AP と表現できる。
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定義 9.1. 相似行列と相似変換
行列 A と B が相似であるとは、ある正則行列（逆行列を持つ行列）P が存在して、

B = P−1AP (9.3)

が成り立つときです。このとき、 A と B は相似行列（similar matrices）と呼ばれる。

図 79のように、固有ベクトルを座標軸とする基底に変えれば、その座標系での写像は P−1AP という形に
なる。この P−1AP を A の相似変換であると呼ぶ。相似変換は、行列 Aを A’= P−1AP という形に変換す
る操作全体を指す言葉で、固有ベクトルによる変換は相似変換の一例である。

実は、この P−1AP という写像はもっと簡単に表す事ができる。そのことを示してみよう。行列 Aの n個
の相異なる固有値を λ1, · · · , λn とし、それらに対応する固有ベクトルを p1, · · · , pn としよう。ここで、固有
値と固有ベクトルは、

Api = λipi (i = 1, · · · , n)

と表すことができる。これらをまとめて行列表現するために、固有ベクトルをまとめた行列を P、対応する固
有値を対角行列に持つ行列 ∆とする。これら用いると、i = 1, · · · , nの n個の関係をまとめて

A

 | |
p1 · · · pn
| |

 =

 | |
p1 · · · pn
| |


λ1 0

. . .

0 λn


と表す事ができる*39。つまり

AP = P∆

のように表す事ができる。ここで、行列 P は逆行列をもつので、両辺に P−1 をかけると

P−1AP = ∆

となる。つまり、

固有ベクトルを基底軸にとれば行列 Aは以下のように簡略化して表現できる。

P−1AP = Λ =

λ1 0
. . .

0 λn

 (9.4)

このように行列を簡単な対角行列に変換する事を対角化と呼んでいる。

*39 列を定数倍するときは対角行列を右から、逆に行を定数倍する時は対角行列を左からかければよい。
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9.3 さて、一体なにがうれしいの？
これは一体何がうれしいのか？

色んな計算が見通し良くなる� �
1. 行列 Aの階乗の計算が以下のように見通しよくなる。
2. 相関行列の固有ベクトルを座標軸にすれば相関行列が Λと簡単にかける。� �

■計算が見通しよくなる まず、左から P、右から P−1 をかけてやって

A = PΛP−1 (9.5)

たとえば、An を考えてみると以下のように、隣り合う P−1P が相殺し合って単位行列 I となり、簡単な式
PΛnP−1 で表せる事がわかる。

An = (PΛP−1)(P︸ ︷︷ ︸
I

ΛP−1) · · · (P︸ ︷︷ ︸
I···

ΛP−1)(P︸ ︷︷ ︸
I

ΛP−1) = PΛnP−1 (9.6)

■相関行列自体が簡単にかける また、よくデータ解析ででてくる相関行列 RX も、固有ベクトルを座標軸に
すると Λと簡単にかける。
まず相関行列の固有ベクトルを並べたモードマトリクス P を作ってやり、それを新しい座標軸にする。そ
うすると、X というデータ行列は、あたらしい座標軸でのデータ行列 X ′ = XP というように計算できる。
なので、

RX́ = X́tX́ = (XP )tXP = P tXtXP = P tRXP

ここで、もともと P が相関行列の固有値であるから、RXP = PΛなので、

P tRXP = P tPΛ

RX́ = Λ

相関行列を簡単にかけると何が嬉しいのか？

例えば、点 x と点 y の距離は、元の座標軸では (x − y)tR(x − y) であるが、あたらしい座標軸では
(x′ − y′)tΛ(x′ − y′)と簡単になる。
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9.4 固有値と固有ベクトルの求め方
ここでは、正方行列 Aを考える事にしよう。固有値と固有ベクトルの関係式は、式 9.1より

Ax = λx

であった。この式は
(A− λI)x = 0

と表す事ができる。この式から λを求めるには、この式が x 6= 0の解を持つ必要がある。つまり、

|A− λI| = 0 (9.7)

が成立しなければならない。何故ならば、もし |A−λI| 6= 0ならば、(A−λI)には逆行列が存在し、x = 0が
解として一意に定まってしまい、Ax = λxの固有値 λが定まらないからである。この式 9.7を固有方程式と
いう。この固有方程式を解くことで、固有値と固有ベクトルを計算する事ができる。

■固有値と固有ベクトルを求める 　では、実際に先の行列 Aについて、固有方程式を解いて固有値と固有
ベクトルを求めてみよう。

A =

(
3 2
2 3

)
なので

|A− λI| =
∣∣∣∣ 3− λ 2

2 3− λ

∣∣∣∣ = (3− λ)2 − 4

= λ2 − 6λ+ 5 = (λ− 5)(λ− 1) = 0

となり λ = 5, 1が求まる。そして、Ax = λxに代入してそれぞれの固有ベクトルを求めればよい。

λ = 5の固有ベクトルを求める Ax = λxに代入して Ax = 5x。つまり(
3 2
2 3

)(
x1

x2

)
= 5

(
x1

x2

)
具体的に展開すると{

x1 − x2 = 0

x1 − x2 = 0
なので、固有ベクトルは p1 =

(
1
1

)
λ = 1の固有ベクトルを求める Ax = λxに代入して Ax = x。つまり(

3 2
2 3

)(
x1

x2

)
=

(
x1

x2

)
具体的に展開すると{

x1 + x2 = 0

x1 + x2 = 0
なので、固有ベクトルは p1 =

(
−1
1

)
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■参考　：固有ベクトルの線形独立性

定理 9.1. 固有ベクトルの線形独立性
n次の正方行列 Aの相異なる固有値が λ1, · · · , λs（s ≦ n）であるとする。そして、それぞれの固有値 λi

に対する固有ベクトルを pi とすると、p1, · · · , ps はお互いに線形独立である。

この定理は数学的帰納法によって証明してみよう。その前にまず線形独立であるという事を復習しておこ
う。定義 2.2のように

c1p1 + · · ·+ cmpm = 0 ならば c1 = · · · = cm = 0

が成立すれば p1, · · · , pm は線形独立である。

1. m = 1のときは、c1p1 = 0ならば、p1 6= 0より c1 = 0が成り立つ。
2. m = k の時に成立するとしよう。つまり

c1p1 + · · ·+ ckpk = 0 (9.8)

ならば、c1 = · · · = ck = 0が成立するとする。
3. ではm = k + 1の時を考えよう。つまり

c1p1 + · · ·+ ckpk + ck+1pk+1 = 0 (9.9)

が成立するなら、c1 = · · · = ck = ck+1 = 0が成立すればよいのである。まずちょっと回りくどいが、
式 9.8が成立するなら、式 9.9を考えた時にも c1 = · · · = ck = 0が成立する事を示そう。
この式 9.9に左から Aをかけると、Api = λipi なので

c1λ1p1 + · · ·+ ckλkpk + ck+1λk+1pk+1 = 0 (9.10)

この式 9.9と 9.10から pk+1 を消去する。つまり、（式 9.10）－ λk+1×（式 9.9）という計算によって

c1(λ1 − λk+1)p1 + · · ·+ ck(λk − λk+1)pk = 0

ここで、λi 6= λk+1 (i = 1, · · · , k)なので、c1 = · · · = ck = 0が成立する。つまり、式 9.8が成立する
なら、式 9.9を考えた時にも c1 = · · · = ck = 0が成立する。なので、式 9.9は

ck+1pk+1 = 0

と表す事ができる。ここで pi 6= 0なので、必ず ck+1 = 0が成立する。以上のように、m = k + 1の
時も

c1p1 + · · ·+ cmpm = 0 ならば c1 = · · · = cm = 0

が成立する。
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10 二次形式とトレース
二次形式とは，二次の項のみからなる多項式で、3x2

1 − 2x1x2 + 4x2
2 などである。この二次形式は，対称行

列 A と「変数を縦に並べたベクトル x 」を用いて，x⊤Ax というコ ンパクトな形で書ける。例えば，

3x2
1 − 2x1x2 + 4x2

2 =
(
x1 x2

)( 3 −1
−1 4

)(
x1

x2

)
= x⊤Ax

このように、２次形式とは xという列ベクトルと対称行列 Aを用いて以下のように表す事を言う。

Q(x) = x⊤Ax (実数), または Q(x) = x†Ax (複素数)

この２次形式はトレースを密接な関係にり、トレースには以下のような特徴があるため、分散共分散行列な
どの期待値計算、最小二乗法の解析、最適化問題（ラグランジュ乗数法など）など様々に応用されている。

トレースの特徴と応用領域

1. 線形性（Linearity）

tr(A+B) = tr(A) + tr(B), tr(cA) = c tr(A).

分配法則を使った計算ができる。特に E[tr(A)] = tr(E[A])といった形で使われ、期待値計算との親
和性が高い。

2. サイクリック性（Cyclic Property）

tr(AB) = tr(BA), tr(ABC) = tr(CAB) = tr(BCA).

2 つ以上の行列で順序をずらす事ができ、 ∂
∂X tr(XA) = A⊤ のように最適化で微分を扱うときに

便利。
3. 固有値の総和（Sum of Eigenvalues）

tr(A) =
∑
i

λi (λi : A の固有値).

行列の対角化やスペクトル分解に直結しており、行列の性質（エネルギー・分散）を一つの数値で表
している。例えば、分散共分散行列のトレースは総分散になっている。

4. 二次形式との関係（Quadratic Form）

x⊤Ax = tr(x⊤Ax) = tr(Axx⊤).

外積で書けるためランク 1 の構造や対称性が見える。例えば主成分分析なら、Var = w⊤Sw =

tr(Sww⊤)と分解できて、ww⊤ を分散共分散行列 S に掛ける事で、どの方向の情報を取り出して
いるかが一目でわかる。
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10.1 トレースの定義と性質

定義 10.1. A = (aij) を n 次正方行列とする。このとき，対角成分の和を行列のトレース（trace，跡）と
いう。

trA =

n∑
k=1

akk (10.1)

つまり以下のようになる。
a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
an1 an2 · · · ann


アンダーライン部分の対角成分の和がトレース

trA =

n∑
k=1

akk

この時、以下の定理が成り立つ。

定理 10.1. トレースの基本的な性質
A,B を n 次正方行列とする。このとき，

1. tr(A+B) = trA+ trB（行列の和）
2. tr(kA) = k(trA)（行列の定数倍）
3. tr(αA+ βB) = α tr(A) + β tr(B) （トレースの線形性）
4. trA⊤ = trA（転置行列）

これは定義から明らかである。

性質 10.1. トレースの対称性
行列の積のトレースは、 積の順序を入れ替えた行列のトレースに等しい。 すなわち、 A と B をそれぞれ
m× n の行列、 n×m の行列とするとき以下の式が成立する。

tr(AB) = tr(BA)
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対角成分なので、これも当たり前なのだが成分表示しながら確認しよう。

AB =



a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

am1 am2 · · · amn





b11 b12 · · · b1m

b21 b22 · · · b2m

...
...

. . .
...

bn1 bn2 · · · bnm


=



n∑
j=1

a1jbj1

n∑
j=1

a2jbj2

. . .
n∑

j=1

amjbjm



BA =



b11 b12 · · · b1m

b21 b22 · · · b2m

...
...

. . .
...

bn1 bn2 · · · bnm





a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

am1 am2 · · · amn


=



m∑
i=1

b1iai1
m∑
i=1

b2iai2

. . .
m∑
i=1

bmiaim


添え字の順番が面倒だが、以下のようになる。

tr(AB) =

m∑
i=1

n∑
j=1

aijbji

tr(BA) =

n∑
j=1

m∑
i=1

bjiaij =

m∑
i=1

n∑
j=1

aijbji = tr(AB)

性質 10.2. トレースの循環性
A、B、C をそれぞれ m× n、n× l、l ×m の行列とするとき以下が成り立つ。この性質をトレースの循環
性という。

　 tr(ABC) = tr(BCA) = tr(CAB) (10.2)

ただし行列のかけ算が成立するためには行数 ×列数の制約は満たす必要があり、完全に自由に順番を変え
られるわけではない。下図のように輪っか状に循環するように回す事ができるという性質である。

A

B C

■証明 トレースの対称性を用いる。
A と BC の対称性を用いると以下が成り立つ。

tr[A(BC)] = tr[(BC)A]

AB と C の対称性を用いると以下が成り立つ。

tr[(AB)C] = tr[C(AB)]
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以上から以下の式が成り立つ。

tr(ABC) = tr(BCA) = tr(CAB)

性質 10.3. トレースの相似変換不変性
A を正方行列、 P を正則行列（逆行列が存在する行列）とし、以下のような相似変換を考える。

A −→ P−1AP

この時、トレースは相似変換に対して値を変えない。すなわち以下の式が成り立つ。

tr
[
P−1AP

]
= tr[A]

■証明 相似変換については式 (9.3)を参照。この証明にはトレースの対称性を用いる。
P−1 と AP の対称性を用いると、

tr
[
P−1AP

]
= tr

[
APP−1

]
が成り立つ。 PP−1 = I（単位行列）であるので以下の式が成り立つ。

tr
[
P−1AP

]
= tr[AI] = tr[A]

性質 10.4. トレースと固有値の和
任意の n 次正方行列 A の固有値を λi(i = 1, 2 · · · , n) とするとき、 A のトレース は、 A の固有値の総
和に等しい。 すなわち、

tr[A] =

n∑
i=1

λi

が成り立つ。 このことから、トレースを固有和と呼ぶこともある。

■証明 式 (9.4)のように、任意の正方行列 A は三角化可能である。 すなわち、以下を満たす上三角行列 Λ

と正則行列 P が存在する。

P−1AP = Λ

また、 Λ の対角成分は A の固有値である。そこで Λ を
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Λ =


λ1 ∗ · · · ∗
0 λ2 ∗
...

. . .
...

0 0 · · · λn


と表すことにする。また、 P は正則行列であるので、

P−1P = PP−1 = I

が成り立つ。 これらと相似変換不変性を用いると、

Tr[A] = Tr
[
P−1AP

]
= Tr[Λ]

= Tr


λ1 ∗ · · · ∗
0 λ2 ∗
...

. . .
...

0 0 · · · λn


=

n∑
i=1

λi

が成り立つことが分かる。 最後の等号ではトレースの定義を用いた。

157



10.2 トレースを確率変数の期待値に応用する
トレースはランダム行列や確率ベクトルの期待値の計算に活用される事が多い。ここでは、トレースを使い
ながら、多変量正規分布間の KLダイバージェンスを導く事を目標にする。KLダイバージェンスとは、2つ
の分布間の「離れ具合」を測る指標で、情報理論の世界において「分布の距離のような尺度」として用いら
れる。

■確率変数について
最初に、確率変数を成分としてもつランダム行列や確率ベクトルについて説明する。n 次確率ベクトル及び
ランダム行列とは、確率変数 X を並べたベクトル及び行列の事であり、以下のように表す。

x = (X1, X2, . . . , Xn) , X =


X11 X12 · · · X1D

X21 X22 · · · X2D

...
...

. . .
...

XD1 XD2 · · · XDD


普通の変数 xと確率変数 X の違いを確認しておくと、変数 xは観測されたデータで具体的な決まった値を
持っているのに対して、確率変数 X はまだ具体的な値は決定していないが、どの値を取るかのルール（確率
分布）だけが定義されている変数という意味である。

■確率変数の演算について
確率変数 X と Y の演算というのは、確率密度関数から X と Y の演算結果に関する新しい確率分布を導く
事になる。

· 確率変数の和 → 畳み込み*40

確率変数 X と Y の和による新たな確率変数 Z = X + Y を考える。このとき、X と Y が独立とする
と Z の確率密度関数は以下のようになる。「どの組み合わせで和が Z になるか」を足し合わせたもので
あり「畳み込み」と呼ばれる。

fZ(z) =

∫ ∞

−∞
fX(x)fY (z − x)dx

· 確率変数の積
X と Y が独立で Z = X · Y という積のときは、以下の積分公式で確率密度を求める。発想は和と同じ
で「どの組み合わせで積が Z になるか」を全部足し合わせる。

fZ(z) =

∫ ∞

−∞

1

|x|
fX(x)fY

( z
x

)
dx

· 確率変数の商
X と Y が独立でW = X

Y という商の時は以下の積分公式で確率密度を求める。発想は同じで「どの組

*40 畳み込み（convolution）は、「2つの確率変数の和の分布」を作るための積分操作で、たとえば、X の密度関数が fX(x)、Y の
密度関数が fY (y)で、和 Z = X + Y を求めるなら、P (Z ≤ z) = P (X + Y ≤ z) となります。つまり、X が x のとき Y は
z − x でないと和が z にならないので、この「全ての組み合わせの確率を集めて積分するという事を意味している。
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み合わせで商がW になるか」を全部足し合わせる。

fW (w) =

∫ ∞

−∞
|y| fX(wy)fY (y)dy

■確率変数ベクトルの分散と共分散について

定義 10.2. 確率変数の分散
一般の確率変数 X に対して以下で定義される V [X] を X の分散と呼ぶ。また、

√
V [X] を X の標準

偏差と呼ぶ。

V [X] = E
[
(X − E[X])2

]
= E

[
X2
]
− E[X]2

期待値 E
[
(X − E[X])2

]の ()ないの二乗を展開。

(X − E[X])2 = X2 − 2XE[X] + E[X]2

それぞれの確率変数 X の期待値をとる。さらに期待値は線形（E[ax + b] = aE[x] + b）なので個別の項の期
待値をとって

V [X] = E[X2]− 2E[X]E[X] + E[X]2

ここで E[X] はただの定数なので、

V [X] = E[X2]− 2E[X]2 + E[X]2 = E[X2]− E[X]2

定義 10.3. 確率変数の共分散
分散共分散行列は以下で定義される。

Σ = E
[
(X − µ)(X − µ)T

]
= E

[
XXT

]
− E[X]E

[
XT
]

まず、確率ベクトルを成分表示しておく

X =


X1

X2

...
Xp

 , 平均ベクトル µ = E[X]

ついで外積の形を行数と列数でみてみると

(X − µ)(X − µ)⊤.
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X は p× 1、(X − µ)⊤ は 1× p だから、(X − µ)(X − µ)⊤ は p× p。これを実際に分配すると

(X − µ)(X − µ)⊤ = XX⊤ −Xµ⊤ − µX⊤ + µµ⊤.

両辺の期待値をとると
Σ = E[XX⊤]− E[Xµ⊤]− E[µX⊤] + E[µµ⊤].

ここで、µ = E[X] は確率変数ではないので、期待値の外に出せるので、

E[Xµ⊤] = E[X]µ⊤ = µµ⊤ , E[µX⊤] = µE[X]⊤ = µµ⊤ , E[µµ⊤] = µµ⊤

これらを代入すると

Σ = E[XX⊤]− µµ⊤ − µµ⊤ + µµ⊤

= E[XX⊤]− µµ⊤

= E[XX⊤]− E[X]E[X]⊤

■期待値とトレースの関係についてのその他の性質
さらに、ダイバージェンスの説明に使う事になる、幾つかの性質を準備しておこう。

性質 10.5. 　ランダム行列のトレースと期待値の可換性
ランダム行列について、以下のように行列のトレースを取った後に期待値を計算することと、期待値を取っ
た後にトレースを計算することが等しいという性質がある。この性質は、トレースと期待値がともに線形演
算であることに基づいている。

E[tr(A)] = tr(E[A]) (10.3)

この性質を確認していくにあたって、まずは期待値とランダム行列（行列の各成分が確率変数になっている
行列）の期待値について述べる。

まず、期待値（Expectation）は確率変数の平均値を表し、確率変数の期待値は次のように定義される。こ
この P (X = x) は X が値 x を取る確率。

E[X] =
∑
x

xP (X = x)

ここでランダム行列 Aを考える。この Aは以下のように D 次元正方行列とする。

A =


a11 a12 · · · a1D
a21 a22 · · · a2D
...

...
. . .

...
aD1 aD2 · · · aDD


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この時、ランダム行列 A の期待値は、各要素の期待値を取ることで計算され以下のようになる。

E[A] =


E [a11] E [a12] · · · E [a1n]
E [a21] E [a22] · · · E [a2n]

...
...

. . .
...

E [an1] E [an2] · · · E [ann]


期待値の線形性とトレースの定義により，期待値とトレースが交換可能であることが分かる。

E[tr(A)] = E

[
D∑

d=1

add

]
= E [a11 + a22 + · · ·+ aDD]

= E[a11] + E[a22 + · · ·+ E[aDD] =

D∑
d=1

E [add]

= Tr


 E [a11] · · ·

...
. . .

E [aDD]


 = tr(E[A])

最後に２次形式の期待値とトレースの関係について準備をしておく。

性質 10.6. ２次形式の期待値とトレース
x を期待値が µ ∈ Rn 、分散共分散行列が Σ ∈ Mn である n 次確率ベクトルとし、 A を n 次対称行列
とすると、以下の式が成立する。

E
[
x⊤Ax

]
= tr(AΣ) + µtAµ

実際このことを証明してみよう。まず平均を引いた得点を z とする（z = x− µ）と、x = z + µとなり、z

の期待値は、E[z] = E[x]− µ = 0 とゼロベクトルである。ついで、２次形式 x⊤Axの期待値を求めて変形し
ていこう
最初に変形過程を書き下したのが下式。この後で、これをひとつずつ解説していく。

E
[
x⊤Ax

]
= E

[
(z + µ)⊤A(z + µ)

]
= E

[
z⊤Az

]
+ 2E

[
µ⊤Az

]
+ E

[
µ⊤Aµ

]
= E

[
ztAz

]
+ 2µtAE[z] + µtAµ

= E
[
tr
(
Azzt

)]
+ 2µtA0 + µtAµ

= tr
(
AE

[
zzt
])

+ µtAµ

= tr(AΣ) + µtAµ

1. E
[
x⊤Ax

]
= E

[
(z + µ)⊤A(z + µ)

]
= E

[
z⊤Az

]
+ 2E

[
µ⊤Az

]
+ E

[
µ⊤Aµ

]
まず µ⊤Az はスカラーなので転置しても同じ。また「積の転置」の性質として (µ⊤Az)⊤ = z⊤A⊤µな
ので、(µ⊤Az)⊤ = z⊤A⊤µここで Aが対称行列なので、(µ⊤Az)⊤ = z⊤Aµ、つまり µ⊤Az = z⊤Aµ

となり、2E
[
µ⊤Az

]とまとめる事ができる。
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2. E
[
z⊤Az

]
+ 2E

[
µ⊤Az

]
+ E

[
µ⊤Aµ

]
= E [ztAz] + 2µtAE[z] + µtAµ

ここで µ は定ベクトルで、A は固定の行列で確率変数ではない。期待値に関係するのは確率変数の z

だけなので、その他は期待値から外す事ができる。

3. E [ztAz] + 2µtAE[z] + µtAµ = E [tr (Azzt)] + 2µtA0 + µtAµ

E[z] = 0 である事を使う。また、z⊤Az はスカラーなのでトレースを取っても同じで、z⊤Az =

tr(z⊤Az)である。さらに、トレースは tr(ABC) = tr(BCA) = tr(CAB)というようにサイクリック
に順番を変えても同じなので、E [ztAz] = E [tr (Azzt)]。

4. E [tr (Azzt)) + 2µtA0 + µtAµ = tr (AE [zzt]) + µtAµ

ここでは E[tr (Azzt)] = tr (AE [zzt])を示そう。まず式 (10.3)で示したように「トレースの期待値」と
「期待値のトレース」は同じ。また Aは確率変数ではないので外に出せるので E[Azz⊤] = AE[zz⊤]と
なり、E[tr(Azz⊤)] = tr(E[Azz⊤]) = tr(AE[zz⊤])となる。

5. tr (AE [zzt]) + µtAµ = tr(AΣ) + µtAµ

E [zzt] は E[z] = 0 であることから、E [zzt] = E [(z − E[z])t(z − E[z])] = Σとなる。

■相互情報量について
正規分布の KLダイバージェンスを説明する前に、もうひとつ相互情報量について説明しておきたい。
事象間に依存関係がない（独立の）とき、結合確率は「各事象の確率」の積であらわされる。

p (xi, yj) = p (xi) p (yj)

一方、依存関係があるとき、結合確率は「条件の確率」と「条件付き確率」の積で定義される。

p (xi, yj) = p (xi) p (yj | xi)

定義 10.4. 相互情報量
相互情報量 I(x;y) は、以下のように「各事象の確率の積」と「結合確率」の商（比）の自己情報量（負 の
対数）の期待値で定義される。

I(x;y) = Ep(x,y)

[
− log2

p (xi) p (yj)

p (xi, yj)

]
= −

n∑
i=1

m∑
j=1

p (xi, yj) log2
p (xi) p (yj)

p (xi, yj)

=

n∑
i=1

m∑
j=1

p (xi, yj) log2
p (xi, yj)

p (xi) p (yj)
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対数の性質より loga
x
y = − loga

y
x です。事象間に依存関係がないとき確率の積と結合確率との比が

p(xi,yj)
p(xi)p(yj)

= 1 であり、 loga 1 = 0 なので、最小値の Imin(x;y) = 0 になります。相互情報量は非負の値
I(x;y) ≥ 0 をとります（証明はいつか）。

■正規分布同士の KLダイバージェンス
KLダイバージェンス (カルバック・ライブラー情報量　 Kullback–Leibler divergence）とは 2つの分布間
の「離れ具合」を測る指標である。ただしこの計量は距離の公理を満たさないので、数学的な意味での距離で
はないが、応用上は、「真の」確率分布 P とそれ以外の任意の確率分布 Q との違いを比較する際に用いられ
る事が多い。たとえば P はデータ、観測値、正確に計算で求められた確率分布などを表し、Q は理論値、モ
デル値、P の予測値などを表す。
KLダイバージェンスは離散分布のみならず連続分布に対しても定義されており、連続分布に対する KLダ
イバージェンスは変数変換について不変である。

定義 10.5. KLダイバージェンス
p(X), q(X)が離散型確率分布の場合は以下のように定義される。

KL[q(X)‖p(X)] =
∑
X

q(X) log
q(X)

p(X)

p(X), q(X) が連続確率分布の場合は以下のように定義される。

DKL(P‖Q) =

∫ ∞

−∞
p(x) log

p(x)

q(x)
dx = EP

[
log

p(x)

q(x)

]
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https://academ-aid.com/statistics/kl-div-multi-normal

https://www.anarchive-beta.com/entry/2023/06/23/060000#google_vignette多変量正規分布の最
尤推定（MLE）

観測データ：X1, . . . ,Xn ∈ Rp×1

確率モデル：Xi ∼ N (µ,Σ)

とする
多変量正規分布（ p-次元）の確率密度関数はこうです：

f(X | µ,Σ) = 1

(2π)p/2|Σ|1/2
exp
(
− 1

2
(X− µ)⊤Σ−1(X− µ)

)
.

観測データX1,X2, . . . ,Xn が 独立同分布 だとすると、全体の尤度は各確率密度の積：

L(µ,Σ) =

n∏
i=1

f(Xi | µ,Σ)

=

n∏
i=1

1

(2π)p/2|Σ|1/2
exp
(
− 1

2
(X− µ)⊤Σ−1(X− µ)

)
.

計算を簡単にするために、対数を取ります：

logL(µ,Σ) = −np

2
log(2π)

n

2
log |Σ|1

2

n∑
i=1

(Xi − µ)⊤Σ−1(Xi − µ).

この式の右辺の最後の方の式を以下のようにトレースで変形する事ができる事を見ていこう
n∑

i=1

(Xi − µ)⊤Σ−1(Xi− µ) = tr
(
Σ−1

∑
i = 1n(Xi − µ)(Xi − µ)⊤

)
.

尤度を最大化 → まず平均の推定
∂

∂µ
logL(µ,Σ) = 0.
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11 射影行列
11.1 基底から座標値を求める
5ページで述べたように、あるベクトル vを表すのに、下図のように、基準となるベクトル e⃗1 と e⃗2 を決め
て、その倍数で表す事が出来る。この時、基準となる１組のベクトル (e⃗1, e⃗2)を基底、それぞれのベクトルに
対して何倍したかという実数の組、この図の場合なら (3, 2)t を座標と呼ぶ。

~v

~e1

~e2

図 80 基準となるベクトルを決めてその倍数で表す

この座標値を基底から求める方法を再度考察しながら、双対基底という概念を導入しよう。

■正規直交基底の場合の座標値の求め方 　 正規直交基底の場合は、131ページに述べたように、座標値は各
基底ベクトルとの内積で求まる

定理 8.5　座標値は各基底ベクトルとの内積で求められる（131ページ）
n個のベクトルの組 {e1, e2, · · · , en}が n次元ベクトル空間 R の正規直交基底であるとすると、ベクトル
空間 Rの任意のベクトル xは

x = x1e1 + x2e2 + · · ·+ xnen

と表すことができ、その座標値 {x1, x2, · · · , xn}は、ベクトル xと各基底ベクトルとの内積 xi =< x, ei >

で求める事が出来る。

座標値が、xi =< x, ei > で求める事が出来る事を確認しよう。実際に x と ei の内積を求めると、
< ei, ei >= δij（i = j なら 0、i 6= j なら 1）なので、以下のように、< ei, ei >以外の項はゼロになり、ei の
成分が求められる。

< x, ei > =< x1e1 + x2e2 + · · ·+ xnen, ei >

= x1 < e1, ei >︸ ︷︷ ︸
0

+ · · ·+ xi < ei, ei >︸ ︷︷ ︸
1

+ · · ·+ xn < en, ei >︸ ︷︷ ︸
0

= xi

つまり、{e1, e2, · · · , en}が正規直交基底なら、任意のベクトル xの座標値を求めるには、ベクトル xと各基
底ベクトルの内積を取ればよい。

■基底が直交していない場合の座標値の求め方 　では、図 82のように、基底が直交していない場合にはど
うやって座標値を求めたらよいのだろうか？　
ここでの基底は直交基底でないことを明示する意味で {v1, v2, · · · , vn}と表す事にする。そして、これらの
基底ベクトルはそれぞれ線形独立なものと考える。
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e

x

e

e

図 81 それぞれの正規直交基底ベクトルへの射影が座標値

v

x

v

v

図 82 基底が直交していない場合の座標値の求め方

その場合もベクトル空間 Rの任意のベクトル xは

x = x1v1 + x2v2 + · · ·+ xnvn

と表すことができるはずである。しかしながら、この式から正規直交基底と同様に座標値を抽出するには、
< x, vi >を求めてもだめである。そこで、以下の双対基底を導入する。

11.2 双対基底を導入する

定義 11.1. 双対基底の定義
２つの基底の組 {v1, v2, · · · , vn}、{γ1, γ2, · · · , γn} が次の関係を満たすとき、この２つの基底はお互いに
双対であるといい、これらを双対基底と呼ぶ。

< vi, γj >= δij

{
1 i = j

0 i 6= j
(11.1)

166



この双対基底を用いると、正規直交基底の場合と同様に ei 軸に関する座標値は、以下のように xと双対基
底の内積

< x, γi > =< (x1v1 + x2v2 + · · ·+ xnvn), γi >

= x1 < v1, γi >︸ ︷︷ ︸
0

+ · · ·+ xi < vi, γi >︸ ︷︷ ︸
1

+ · · ·+ xn < vn, γi >︸ ︷︷ ︸
0

= xi

で求める事ができる。しかし、元々 i番目以外の基底ベクトルと直交するものを i番目の双対基底というよう
に定義しているので当然である。では、そもそも i番目以外の基底ベクトルと直交するとは何か？　図 83に
双対基底のイメージを示した。

v

v

v

v

v

v

v

v

v

v v v v

図 83 双対基底を作るには、自分以外の軸と直交するように定めていく

図 83で示しているように、例えば 3番目の双対基底は、v1 と v2 が作る平面に直交するように定めてやれ
ばよいのである。同様に全ての自分以外の軸と直交するように定めてやれば、その空間が n次元なら、n個の
双対基底ができる。

11.3 双対基底はどうやって求めるか？
では、具体的にどうやって双対基底を求めるのかを調べよう。まずは、基底 {v1, v2, · · · , vn} の双対基底

{γ1, γ2, · · · , γn}があるとしよう。その２つの基底の間には

< vi, γj >=
(
γj1 γj2 · · · γjn

)

vi1
vi2
...

vin

 = δij

{
1 i = j

0 i 6= j

という関係がある。これを行列で表してみよう。横ベクトルを縦積みして、縦ベクトルを横積みすると、i 6= j

なら 0なので 
γ11 γ12 · · · γ1n
γ21 γ22 · · · γ2n
...

...
...

...
γn1 γn2 · · · γnn



v11 v21 · · · vn1
v12 v22 · · · vn2
...

...
...

...
v1n v2n · · · vnn

 =


1 0 · · · 0
0 1 · · · 0
...

...
...

...
0 0 · · · 1


というように単位行列になる。これを ΓV = I とかくと、Γと V 行列はお互いに逆行列になっている事がわ
かる。なので、V の逆行列を求めてやれば Γが求められる。具体例で確認してみよう。
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例題 11.1. 三次元空間の、以下の３つの基底ベクトルの双対基底を作れ。

v1 =

1
1
1

 , v2 =

1
2
3

 , v3 =

1
3
2



この３つの縦ベクトルを横積みした行列を V とすると

V =

1 1 1
1 2 3
1 3 2


この逆行列を求めると

V −1 =
1

3

 5 −1 −1
−1 −1 2
−1 2 −1


なので、この行ベクトルをとってくれば、双対基底になるので

γ1 =
1

3

 5
−1
−1

 , γ2 =
1

3

−1
−1
2

 , γ3 =
1

3

−1
2
−1


これは、確かに以下を満たす。

< vi, γj >= δij

{
1 i = j

0 i 6= j

このように、基底ベクトルからなる行列 V の逆行列を求める事で双対基底を求める事ができる。

11.4 双対基底を用いて各基底軸への射影行列を作る
この双対基底を使うと、任意のベクトルを各基底軸に射影する行列を作り出す事ができる。具体的に見てみ
よう。基底 {v1, v2, · · · , vn}に対して、双対基底 {γ1, γ2, · · · , γn}を取ったとする。このとき、同じ i番目の
基底通しの内積をとると

γt
ivi =

(
γi1 γi2 · · · γin

)

vi1
vi2
...

vin

 = 1

であった。ここで、順番を交換して viγ
t
i とすると

viγ
t
i =


vi1
vi2
...

vin

(γi1 γi2 · · · γin
)
=


vi1γi1 vi1γi2 · · · vi1γin
vi2γi1 vi2γi2 · · · vi2γin

...
...

. . .
...

vinγi1 vinγi2 · · · vinγin

 (11.2)

のように n× nの行列になる。これを Pi と表すことにしよう。つまり

Pi = viγ
t
i

である。実は、この Pi 行列が、第 i番目の基底 vi に対する射影行列になっている。その事を確認しよう。
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まず、ベクトル空間 Rの任意のベクトル xは

x = x1v1 + x2v2 + · · ·+ xnvn

と表すことができる。これに対して上記の Pi 行列を作用させると

Pix = Pi(x1v1 + x2v2 + · · ·+ xivi + · · ·+ xnvn)

= viγ
t
i (x1v1 + x2v2 + · · ·+ xivi + · · ·+ xnvn)

= x1viγ
t
iv1 + xvviγ

t
iv2 + · · ·+ xiviγ

t
ivi + · · ·+ xnviγ

t
ivn

ここで、γt
ivj = δ (i = j → 1, i 6= j → 0)なので

Pix = x1vi γ
t
iv1︸︷︷︸
0

+xvvi γ
t
iv2︸︷︷︸
0

+ · · ·+ xivi γ
t
ivi︸︷︷︸
1

+ · · ·+ xnvi γ
t
ivn︸︷︷︸
0

= xivi

となり、基底ベクトル vi 上のベクトルが抽出できた。同様に

P1x = x1v1, P2x = x2v2, · · · , Pnx = xnvn

となり、xを各基底ベクトルへ射影したベクトルが抽出できる。

■具体例でみてみよう では、以下のようなベクトル xを、v1, v2, v3 の基底ベクトル上に射影してみよう。

x =

4
8
9

 ⇒

v1 =

1
1
1

 , v2 =

1
2
3

 , v3 =

1
3
2


まずは、168ページのように、逆行列から双対基底を求めると

γ1 =
1

3

 5
−1
−1

 , γ2 =
1

3

−1
−1
2

 , γ3 =
1

3

−1
2
−1


それぞれ P1, P2, P3 を求めて、xにかけると

P1 = v1γ
t
1 =

1

3

1
1
1

(5 −1 −1
)
=

1

3

5 −1 −1
5 −1 −1
5 −1 −1

 P1x =
1

3

5 −1 −1
5 −1 −1
5 −1 −1

4
8
9

 =

1
1
1

 = v1

P2 = v2γ
t
2 =

1

3

1
2
3

(−1 −1 2
)
=

1

3

−1 −1 2
−2 −2 4
−3 −3 6

 P2x =
1

3

−1 −1 2
−2 −2 4
−3 −3 6

4
8
9

 =

2
4
6

 = 2v2

P3 = v3γ
t
3 =

1

3

1
3
2

(−1 2 −1
)
=

1

3

−1 2 −1
−3 6 −3
−2 4 −2

 P2x =
1

3

−1 2 −1
−3 6 −3
−2 4 −2

4
8
9

 =

1
3
2

 = v3

というように、ベクトル xを各基底ベクトルに射影したベクトルが求められる。確かに

x = v1 + 2v2 + v3 =

1
1
1

+ 2

1
2
3

+

1
3
2

 =

4
8
9


と分解されている。

11.5 射影行列とその定義
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定義 11.2. 射影行列の定義
Rn = V ⊕W のとき、Rn に含まれる任意のベクトル xは、以下のように一意に分解できる。

x = v + w ただし、v ∈ V、w ∈ W

V W

R���‡

R �Ì�C�Ó�Ì�v�fx �˝v w

x = v+ w

���‡k ���‡n -k

n

このとき、xを v に写す変換をW に沿った V への射影子 (projector)と呼び、Pv·w または Pv と表す。

■射影行列 P は、PP = P という性質を持つ この射影行列 P は、べき等である。つまり

PP = P

という性質を持っている。これは、任意の x = v+wのベクトルに対して Px = vが成立するなら、PPx = v

も成立するという事である。意味としては、「一度射影した結果をもう一度射影しても同じである。」という
事であり、当然と思われるが、確認しよう。
双対基底を用いて作った各基底ベクトルへの射影行列を考えてみよう。任意のベクトル x をある基底ベク
トル vi へ射影する行列は式 11.2のように

Pi = viγ
t
i

でもとめられる。ここで PiPi を求めると、式 11.1のように、viγ
t
i = 1なので

PiPi = vi γ
t
ivi︸︷︷︸
1

γt
i = viγ

t
i = Pi

たしかにべき等（PiPi = Pi）が成立している。しかし、これは 1つの基底ベクトルへの射影であり、ある vi

と vj によって作られる平面への射影行列でも成立するのだろうか？次にそれを確かめよう。
n 次元空間の任意のベクトル x を、1～m 次元（m < n）までの空間に射影する行列を P1∼m とすると、

P1∼m は
P1∼m = P1 + P2 + · · ·+ Pm

で求められる。何故なら、Pix = xivi というように Pi は各軸への射影であるので、xに P1∼m をかけると

P1∼mx = (P1 + P2 + · · ·+ Pm)x = x1v1 + x2v2 + · · ·+ xmvm

というように各基底ベクトルへの射影ベクトルの和となり、これは n次元ベクトル xをより小さなm次元空
間へ射影したものに他ならない。
では、このm個の基底ベクトルが作る空間への射影ベクトル P1∼m についても、P1∼mP1∼m = P1∼m が成
立する事を確認しよう。まずは双対基底を用いて表すと

P1∼m = P1 + P2 + · · ·+ Pm = v1γ
t
1 + v2γ

t
2 + · · ·+ vmγt

m
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P1∼mP1∼m = (v1γ
t
1 + v2γ

t
2 + · · ·+ vmγt

m)(v1γ
t
1 + v2γ

t
2 + · · ·+ vmγt

m)

ここで、()内の第 i項同士のかけ算は、γt
ivi = 1となるが、それ以外は i 6= j であり、γt

jvi = 0なので

P1∼mP1∼m = v1 γ
t
1v1︸︷︷︸
1

γt
1 + v2 γ

t
2v2︸︷︷︸
1

γt
2 + · · ·+ vm γt

mvm︸ ︷︷ ︸
1

γt
m

= v1γ
t
1 + v2γ

t
2 + · · ·+ vmγt

m

= P1∼m

となって、確かに P1∼mP1∼m = P1∼m が成立する。

■逆に PP = P を満たすものは射影行列である 　射影行列が PP = P を満たすことが判ったが、逆にべき
等 PP = P を満たす正方行列はすべて射影行列であると言える。

定理 11.1. 射影行列であるための必要十分条件
n次の正方行列 P が射影行列となるための必要十分条件は

PP = P

を満たす事である。

P が射影行列であれば、PP = P を満たすことは判った。なので、逆に PP = P を満たすような正方行列
が、射影行列であることを示そう。まず結論からいってしまうと、P が PP = P という性質を持ってさえい
れば、空間 Rn は P の像空間と零空間とによって

Rn = Im(P )⊕Ker(P )

と直和分解できる。なので、空間 Rn の任意のベクトル xは、

x = v + w ( ただし、v ∈ Im(P ), w ∈ Ker(P ) )

と一意に分解できる。このように分解できれば、定義 11.2より、xを v に変換する行列が P が射影行列であ
ることがわかる。

では、具体的に証明していこう。まず、x ∈ Rn である任意のベクトル xをとり、この xの P による写像を
v とする。つまり、

v = Px (11.3)

とする。これは v ∈ Im(P )としている事に他ならない。次に、この xを P で写像した像 v と元のベクトル x

との差を w とおこう。つまり
w = x− v

この w の P による像を求めると
Pw = Px− Pv

ここで、式 11.3より Px = vである。また、PP = P であるという性質と v = Pxより、Pv = PPx = Px = v

となる。なので、上式は
Pw = Px− PPx = v − v = 0 (11.4)
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つまり、PP = P が成り立つならば、xから Pxを除いた残りの部分 w の P による像は必ずゼロになる。言
い換えれば w ∈ Ker(P )となる。なので任意の xは

x = v + w ( ただし、v ∈ Im(P ), w ∈ Ker(P ) )

と表す事ができる。
つぎは、この分解が一意である事を確認しよう。そのためには、Im(P ) ∩Ker(P ) = {0}が証明できれば
よい。具体的には、Im(P ) ∩Ker(P )に属する任意のベクトルを αとし、それが 0以外に存在しないことを
示そう。まず、α ∈ Im(P )なので、あるベクトル v を使って

α = Pv (11.5)

と表すことができるはずである。一方で、同時に α ∈ Ker(P )なので、
Pα = 0 (11.6)

とも表すことができる。ここで、式 11.5の α = Pv の両辺に P をかけてみる。PP = P であることを利用す
ると

Pα = PPv = Pv = α

この式と式 11.6を比較すると、Im(P ) ∩Ker(P )に属する任意の αについてこの２式が成立するためには、
α = 0でなければならない。なので Im(P ) ∩Ker(P ) = {0}であり、Rn = Im(P )⊕Ker(P )である。

以上のように、「一度写像した結果をもう一度写像しても同じ」（PP = P を満たす）という性質をもった行
列 P は、Im(P )への射影行列であり、空間 Rn を Rn = Im(P )⊕Ker(P )と直和分解する。

定理 11.2. P が射影行列なら (I − P )も射影行列
P が射影行列なら、(I − P ) も射影行列で、空間 Rn の任意のベクトル x を Ker(P ) へ射影する行列で
ある。

まず、(I − P )もべき等である事を示そう。以下のように展開して P = P 2 を用いると
(I − P )(I − P ) = I − 2P + P 2 = I − 2P + P = (I − P )

なので、(I − P )もべき等であり、射影行列である。
次に、(I −P )は xをKer(P )に射影する射影行列であることを確認しよう。まず、P が射影行列であると
すると、図 84のように、Rn = Im(P )⊕Ker(P )であり、任意のベクトル xは、

x = v + w ( ただし、v ∈ Im(P ), w ∈ Ker(P ) )

と表す事ができる。
ここで、P は x → v へ写像する射影行列なので Px = v であり、これを x = v + w に適用すると

x = Px+ w

これを変形して
(I − P )x = w

つまり、(I − P )は Rn 上の任意のベクトル xを w ∈ Ker(P )に写像する射影行列であると言える。
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ImP KerP

R

R xv w

x = v + w

k n - k

n
n

R
n = Im(P ) ⊕ Ker(P )

v ∈ Im(P )

w ∈ Ker(P )

図 84 射影行列 P による分解

11.6 射影行列の構造を簡単にしよう
直感的には、V ⊕W を V に射影するという事は、結局 V の基底に関する座標値のみを選んでいる事にな
るはずである。基底が正規直交の場合は、まさにそうであるが、直交していない場合も結局同じ構造をしてい
るはずである。

■射影行列の構造を調べる 　実際、以下の定理のように、射影行列の構造を単純化して、その働きを見通し
よくする事ができる。

定理 11.3. Rn = V ⊕W で、dimV = k であるとき、n次の正方行列 P が部分空間 V への射影行列なら
ば、以下のように表す事ができる。

P = T∆kT
−1

ただし、T は n次の正則行列で、∆は以下のように k 次元の単位行列（Ik）を成分とする行列である。

∆k =



1
. . .

1
0

. . .

0


=

(
Ik 0
0 0

)

Rn = V ⊕W で、dimV = kならば、dimW = n− kである。ここで n− k = sとおいておこう。この時、
V とW の基底をそれぞれ、β1 = {v1, v2, · · · , vk}、β2 = {w1, w2, · · · , ws}にとれば、

β = {v1, v2, · · · , vk, w1, w2, · · · , ws}

は、Rn 全体の基底となっている。この n個の基底 β を縦ベクトルとして並べた行列を T とすると、任意の
ベクトル x⃗は

x⃗ = Tx =

 | | | |
v1 · · · vk w1 · · · ws

| | | |




x1

...
xk

xk+1

...
xn


(11.7)
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と表す事ができる。一方、この x⃗の空間 V の座標だけを取り出したものを、この基底行列 T を用いて表すと

v⃗ = Tx′ =

 | | | |
v1 · · · vk w1 · · · ws

| | | |




x1

...
xk

0
...
0


(11.8)

というように、v⃗ は、x⃗の座標値 (x1, · · · , xk, xk+1, ·, xn)の後半の s個の座標をゼロにしたものである。これ
を x′ とする。では、元々の座標値から v⃗ の座標値を抽出するにはどうしたらよいだろうか？

1
. . .

1
0

. . .

0





x1

...
xk

xk+1

...
xn


=



x1

...
xk

0
...
0


このように、左上の k 個の対角成分だけが 1の行列をかければ、xから x′ が抽出できる。この左上の k 個の
対角成分だけが 1の行列を ∆k とすると

x′ = ∆kx (11.9)

さて、これで準備ができた。まず式 11.7より、x⃗ = Tx。また、式 11.8より v⃗ = Tx′。さらに、この x′ は
式 11.9より、x′ = ∆rxなので v⃗ = T∆kx。この２つの式を用いよう。

x⃗ = Tx

v⃗ = T∆kx

そもそも P は、任意のベクトル x⃗を v⃗ に射影するベクトルなので

Px⃗ = v⃗

この式に、先の２つの式を代入すると
PTx = T∆kx

この式を変形した (PT − T∆k)x = 0が任意の xについて成立するので、

PT = T∆k

この T は線形独立な基底ベクトルを列ベクトルにしたもので、正則行列 Rank(T ) = nであり、逆行列を持つ
ので

P = T∆kT
−1

つまり、空間 Rn から部分空間 V への射影行列 P は、元々の Rn の基底ベクトルを列ベクトルにした行列
T によって、P = T∆kT

−1 と表す事ができる。

174



11.7 直交補空間を作る
今度は、元々基底が直交している場合を考えよう。これは直感的な空間座標でありイメージしやすい。例え
ば、下図のように、通常の直交座標をもった三次元空間 V があって、その部分空間として２次元平面W を取
れば、その残りの１次元の直線が直交補部分空間W⊥ となる。

V

V = W ⊕ W
⊥

W

W
⊥

W

W
⊥

e

e

w

xx - w

W

多次元空間においても、部分空間W をとれば、必ずW ⊕W⊥ となるような直交補空間W⊥ が存在する。そ
して、空間 V の任意の xは、この２つの空間に分解する事ができる。この任意の xをW に射影する行列を
直交射影行列と呼び、この垂線の足 w を xの V への正射影と呼ぶ。まずは、この事をもう少し正確に定義し
ていこう。

定理 11.4. 直交補空間
V が U の部分空間であるとする。このとき、V のすべての元と直交する元の集合W を空間 V の直交補空
間と呼ぶ。この直交補空間W は、また (1)U の部分空間になっており、さらに (2)V とW は、お互いに交
わらない (V ∩W = {0})。

V W

U

V ∩W = 0

W U

■直交補空間の定義の証明 　定理の (1)と (2)を確認しておこう。

(1)W がまた部分空間になっている事 　部分空間であることを証明するには、定石があって 66ページの定義
5.1のように、V と直交する元の集合W の任意の要素を w,w1, w2 とするとき、以下の２つの式が成
立する事を示せばよい。

w1 + w2 ∈ W

αw ∈ W

なので証明は簡単で、V の任意の元を v とするとき、内積の性質から以下のように、(w1 +w2)もまた
v と直交するし、αw もまた v と直交する。つまり、和も定数倍もまたW の要素であり、W が部分空
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間になる事がわかる。

< v,w1 + w2 > =< v,w1 > + < v,w2 >= 0

< v, αw > = α < v,w >= 0

(2)V とW に交わりがない事 　これは V ∩W に属する任意の元 xを取ったとすると、以下のように、< x, x >

は V の要素とW の要素の内積と考えられるので、x = 0でしかありえない。つまり、V ∩W = {0}
である事から証明される。

< x, x >= 0 なので |x| = 0

■直交補空間とシュミットの直交化 　ある部分空間 V を設定すれば、必ずその直交補空間を設定する事が
出来る。つまり

部分空間 V には必ず V ⊕ Ṽ となる補部分空間 Ṽ が存在し、この補部分空間の基底に対してシュミットの
直交化を施し、V と直交するようにとってあげれば、V の直交補空間が成立する。

この事を納得するために、幾つかの用語の復習をしておこう。

和空間 和空間とは、110ページに定義したように、以下のように２つの線形空間 VA、VB の要素の和によっ
て構成される空間である。

VA VB

x = a1 + b1 y = a2 + b2

a1 b1

a2 b2
x =+ y a1 + b1a2 + b2+

x + y

VA∈a1 + a2 VB
b1+ b2 ∈

VA∩B∈

直和 直和とは、この２つの線形空間 VA と VB との交わりがない、つまり V の２つの線形部分空間 VA と VB

が VA ∩ VB = {0}の場合の和空間の名称であり、VA∩B = VA ⊕ VB と書く。

VA VB

VA ∩ VB = 0

ṼV
V

U = V ⊕ Ṽ

VA VB

補部分空間 補部分空間とは、線形空間 U の中に線形部分空間 V を取った場合の残り部分。これを Ṽ と書く。
この補部分空間 Ṽ は、112ページの定義 7.4のように、必ず V と直和になるように取ることが出来る。
つまり、U = V ⊕ Ṽ とすることが出来る

以上のように、ある部分空間 V には必ず V ⊕ Ṽ となる補部分空間 Ṽ が存在し、この補部分空間の基底を
V と直交するようにとってあげれば、V の直交補空間が成立する。そして、前節で述べたシュミットの直交
化を行う事で、n次元空間の線形独立な n個のベクトルは必ず直交化する事ができる。なので、必ず部分空間
V に対する直交補空間を作る事ができるのである。
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11.8 直交直和分解と直交射影行列
そして、任意のベクトル xは、この部分空間 V と直交補空間W とに直交直和分解でき、x = v + w ( v ∈

V, w ∈ W )と一意に分解できる。

定義 11.3. 直交直和分解と直交射影行列
空間 U に部分空間 V が存在し、その直交補空間をW とすると、U の任意の要素 xは、V とW の要素を
v と w と表すと、x = v + w と一意に書くことができる。これを直交直和分解と呼ぶ。また任意の xを V

の要素 v に写す変換を「V ⊥ に沿った V への」直交射影行列と呼ぶ。

V

U

U xv w

x = v + w

k n - k

n

V
⊥

P

x v

x v

■一意に分解できる事 まず x = v + w と分解できる事については、元々直和が和空間から定義されている
ので当然である。また、その直和分解の仕方が唯一である事については、111ページの定理 7.2で述べた。こ
こでも再度確認してみる。

まず仮に、V ⊕W に含まれる任意の元 xが、以下のように２通りの方法で

x = v1 + w1 = v2 + w2 v1, v2 ∈ V w1, w2 ∈ W

と表せたとする。これが同じベクトルでなければならない事を示せばよい。そこで、まずこの式を変形して

v1 − v2 = w2 − w1

ここで、この元を cとおく、つまり c = v1 − v2 = w2 − w1 とすると

c = v1 − v2 ∈ V

c = w1 − w2 ∈ W

つまり、cは V にもW にも含まれる
c ∈ V ∩W

ここで、直和の定義より V ∩W = {0}なので、c = 0でしかない。したがって、v1 = v2であり、かつ w1 = w2

である。つまり同じベクトルでなければならない。

■直交射影行列は P 2 = P で P t = P である事 　次いで、この直交射影行列が、

P 2 = P かつ P t = P
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と言う性質を持っている事を示そう。ちなみに、直交していない射影行列*41は P 2 = P のみが成立し、
P t = P は成立しない。もちろん、P 2 = P は射影行列の性質なので当然成立するのだが、ここでは「直交基
底の場合は、基底とその双対基底が同じになる。」という事を示したいので、あえて同様に確認する事にする。
まず、元々の基底を {e1, e2, · · · , en}とすると、

< ei, ej >= etiej = δ (i = j : 1 i 6= j : 0) (11.10)

というようにお互いに直交する性質がある。基底が直交しない場合は、この性質が利用できなかったので双対
基底を導入した。では直交基底の場合の双対基底はどうなるのだろうか？
167ページの双対空間とは何か？を見て欲しい。ここに示したように、双対空間とは、それぞれ基底軸以外
の複数の軸に対して直交する軸をとっていく事で出来ていた。なので、元々の基底軸が互いに直交している場
合は、図 85のように、自分以外の複数の軸に直交する軸とは自分自身に他ならない。

v

v

v

e

e

e

図 85 直交基底の場合は基底とその双対基底は同じ

このように直交基底の場合は、一般の射影行列の特別な場合で「基底とその双対基底は同じになる」という
特徴がある。しかし、同様な議論が出来るはずである。なので、式 11.10の逆をとった

eie
t
i =


ei1
ei2
...

ein

(ei1 ei2 · · · ein
)
=


ei1ei1 ei1ei2 · · · ei1ein
ei2ei1 ei2ei2 · · · ei2ein

...
...

. . .
...

einei1 einei2 · · · einein

 = Pi

は、軸 iへの射影ベクトルになっている筈である*42。それを確認しよう。まず、これらの基底ベクトルを用い
て任意の xは

x = x1e1 + x2e2 + · · ·+ xnem

と表すことができる。これに上記の直交射影行列 Pi をかけてみよう。

Pix = Pi(x1e1 + · · ·+ xiei + · · ·+ xnem)

= eie
t
i(x1e1 + · · ·+ xiei + · · ·+ xnem)

= x1ei e
t
ie1︸︷︷︸
0

+ · · ·+ xiei e
t
iei︸︷︷︸
1

+ · · ·+ xnei e
t
iem︸︷︷︸
0

= xiei

*41 直交射影行列と区分する意味で、斜交射影行列と呼ぶ場合もある。
*42 ei1ei1 は 1ではない。なぜなら、これは成分通しのかけ算でありベクトルの内積ではないので注意。
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となり、確かに i番目の基底軸へ射影したベクトルが抽出できる。また同様にして、i ∼ j の軸に正射影する
直交射影行列は

Pi∼j = Pi + · · ·+ Pj

で求められる。
さて、では P = eie

t
i を利用して P 2

i = Pi と P t
i = Pi を確認しよう。

PiPi = ei e
t
iei︸︷︷︸
1

eti = eie
t
i = Pi

また積の転置は (AB)t = BtAなので*43

P t
i = (eie

t
i)

t = eie
t
i = Pi

となり、確かに P 2 = P と P t = P 成り立つ。

■逆に P 2 = P かつ、P t = P が成り立つなら直交射影行列 直交射影行列ならば、P 2 = P かつ、P t = P

が成り立つ事が判った。逆にこの２つの性質が成り立つなら直交射影行列であるともいえる。

定理 11.5. 直交射影行列であるための必要十分条件
正方行列 P が直交射影行列となるための必要十分条件は、以下の２つを満たす事である。

P 2 = P (11.11)

P t = P (11.12)

必要条件は見てきたので、ここでは P 2 = P かつ、P t = P が十分条件となっている事を示そう。まず、定
理 7.3のように P の列ベクトルの一次結合によって成立する空間は部分空間をなすのでこれを部分空間 P と
する。さらに 176ページで述べたように、空間 U の中に部分空間 V が存在するなら、必ずそれに対する直交
補空間を取ることが出来るのでこれを P⊥ とする。そのように定義すると、図 86のように、元の空間 U の任
意の要素 xは

x = v + w (v ∈ P, w ∈ P⊥)

と一意に表す事ができる。

P

U

U xv w

x = v + w

k n - k

n

P
⊥

図 86 P とその直交補空間 P⊥ との直和分解

*43 36ページの式 (3.9)参照

179



そして、この P（P 2 = P かつ、P t = P という性質を持っている P）が射影行列であるためには、Px → v

という写像になっていればよい。と言うことは、

Px = P (v + x) = v つまり、Pv = v, Pw = 0

が成立すればよい。さて、これを示していこう。
まず、v は空間 P の元なので以下のように、行列 P の列ベクトルの一次結合で表現できる。

v1
v2
· · ·
vn

 =

 | | |
p1 p2 · · · pn
| | |



α1

α2

· · ·
αn


つまり、v = Pαと表す事ができる。この両辺に P をかけると

Pv = P 2α

ここで、P 2 = P という性質を利用すると

Pv = P 2α = Pα = v (11.13)

つまり、P 2 = P という性質があるなら、空間 P の元 v はそのまま Pv = v という事である。
一方、空間 P と P⊥ が直交する、つまり

< Pv,w >= vtP tw = 0

が成り立つ。ここで、P t = P という性質を利用すると、この式は vtPw = 0となる。これが、v 6= 0であっ
ても成立する必要があるので

Pw = 0 (11.14)

これで、Pv = v, Pw = 0が証明できた。なのでこの２つの式を利用すると

Px = P (v + w) = Pv + Pw = v

となり、この行列 P は、任意の xを部分空間 P の元 v に写す射影行列となっている事が確かめられた。
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11.9 直交射影行列と最小二乗法
今度は、図 87のように、n×m行列 Aによって m次元空間 V のベクトル xが、n次元空間 U のベクト
ル y に写像されている場合を考えよう。

a11 a12
· · · a1m

a21 a22 · · · a2m

.

.

.

.

.

.

.
.
.

.

.

.

a 1 a 2 · · · a

x1

x2

.

.

.

xm

=

y1

y2

.

.

.

y

n × m mn V

U

m

n

nmnn n

y =Ax

x Im

y
v

w

=

図 87 Aの列空間 Im(A)への射影行列

当然、y が Aの列空間に存在する、つまり行列 Aの列ベクトルを基底ベクトルとする空間 S(A) = Im(A)

に存在すれば
y = Ax

と書くことができる。いま、この y を Im(A)に限定せずに、任意の空間 U の元であるとしたとしよう。部分
空間は必ず直交補空間との直和に分解できるので、U = Im(A)⊕ Im(A)⊥ と書ける。ここで、vを Im(A)の
元、w を Im(A)⊥ の元とすると、y は以下のように表現できる。

y = v + w

このとき、ベクトル y を Aの列空間ベクトル v に射影する直交射影行列を求めよう。

定理 11.6. 列空間への射影行列
n×m行列 Aの列ベクトルが線形独立としたとき、Aの列ベクトルが張る空間 S(A)への直交射影行列は
以下のようになる。

P = A(AtA)−1At (11.15)

�æ�ó�Ô S(A)

a

a

v

yw = y -v

図 88 ベクトル y の列空間 S(A)への直交正射影

図 88のように、n ×m行列 Aの列空間 S(A)に含まれない n次元ベクトル y を列空間に射影したベクト
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ルを v とする。このベクトル v は、列空間に含まれるので

v =

 | | · · · |
a1 a2 · · · an
| | · · · |



α1

α2

...
αn

 つまり、 　 v = Aα (11.16)

と表す事ができる。ここで、w = y − v = y −Aαを取ると、このベクトル wは、列空間上の全てのベクトル
と直交しているので、内積がゼロになる。その事を利用しよう。まずは、列空間上の任意のベクトルを Apと
すると

< Ap,w >= (Ap)t(y −Aα) = 0

この式を変形して
ptAt(y −Aα) = pt(Aty −AtAα) = 0

この式が任意の pについて成立する必要があるので、

Aty = AtAα

ここで行列 Aの列ベクトルは線形独立なので、AtAには逆行列が存在する。なので、

α = (AtA)−1Aty

これを式 11.16に代入して
v = A(AtA)−1Aty

つまり、
P = A(AtA)−1At

という行列が、空間 U の任意のベクトルを、行列 Aの列空間に射影する直交射影行列となっている事が判る。
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12 対角化とシステムの安定性判別
システムの安定性の判別という観点から、固有値・固有ベクトルと対角化をあつかってみる。

12.1 自己回帰モデルのシミュレーション
時系列モデル� �
ある時点 tの状態をベクトル表示すると X(t)と表せたとする。常にある時点 tの状態がひとつ手前の状
態 X(t− 1)によって決定されているとする。つまり

X(t) = AX(t− 1)

と表す事ができたとする。その時、初期値 X(0)が判れば t時点での状態ベクトルは

X(t) = At X(0) (12.1)

で求める事ができる。� �
この事を具体的に確認してみよう！　以下のような株価の変化の自己回帰モデルというものを事例として確
認していく。

事例 12.1. 今日の株価 x(t)が、１日前の株価 x(t− 1)、２日前の株価 x(t− 2)、３日前の株価 x(t− 3)か
ら、以下のように決まっているものとしよう。

x(t) = −0.5 x(t− 1) + 0.34 x(t− 2) + 0.08 x(t− 3) (12.2)

初期条件 x(0) = 0.78, x(−1) = 0.8, x(−2) = 1.5

この時、この予測式をシミュレーションする事を考える。

■自己回帰モデルを行列表現する 　準備として、この式 12.2を行列表現してみよう。まずは、１日前の株
価 x(t− 1)、２日前の株価 x(t− 2)、３日前の株価 x(t− 3)を以下のようにベクトル表現する。

X(t) =

 x(t)
x(t− 1)
x(t− 2)


そうすると、式 12.2は、

X(t) =

 x(t)
x(t− 1)
x(t− 2)

 =

 −0.5 0.34 0.08
1 0 0
0 1 0

 x(t− 1)
x(t− 2)
x(t− 3)


と表す事が出来る。つまり、

A =

 −0.5 0.34 0.08
1 0 0
0 1 0


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とすると
X(t) = AX(t− 1)

と表す事ができる。

■変化の様子を計算する 　この行列表現を用いて n日後にどうなるかを計算してみよう。
まず初期条件から

X(0) =

 0.78
0.8
1.5


ついで１日後の株価は、X(t) = AX(t− 1)より

X(1) = AX(0)

=

 −0.5 0.34 0.08
1 0 0
0 1 0

 0.78
0.8
1.5

 =

 0.002
0.78
0.8


同様に２日後の株価を計算するには、１日目の株価ベクトルに Aをかければ良いので

X(2) = AX(1)

=

 −0.5 0.34 0.08
1 0 0
0 1 0

 0.002
0.78
0.8

 =

 0.3282
0.002
0.78


つまり、A(1)、A(2)、A(3)、・・・は

X(1) = AX(0)

X(2) = AX(1) = A{AX(0)} = A2X(0)

X(3) = AX(2) = A{AX(1)} = A{A{AX(0)}} = A3X(0)

· · ·

と表すことが出来る。つまり、一般に X(n)は以下のように表す事ができる。

X(n) = AnX(0)

■シミュレーションしてみる 　では、この様子をシミュレーションしてグラフを描いてみよう。R言語を用
いたプログラムがリスト 1で、それで描いたのが図 89である。

ソースコード 1 自己回帰モデルのシミレーションのプログラムリスト
#正方行列をべき乗する関数
# 乗数は二番目の引数で指定。何も指定しなかったら２乗
matpow <− function(in.matrix, pow=2){

out.matrix <− in.matrix

for( i in 2:pow){
out.matrix <− out.matrix %∗% in.matrix

}
return(out.matrix)

}
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図 89 自己回帰モデルのシミレーション

#元の行列 A と初期値 x0

A <− matrix(c(−0.5,1,0,0.34,0,1,0.08,0,0),nrow=3)

x0 <− matrix(c(0.78,0.8,1.5),nrow=3)

n.c <− 50 #t=50までの計算をする
x.n <− c(x0[1],(A %∗% x0)[1]) #0,1日目までのデータを格納
for(i in 2:n.c){ #2日～n.c日までの計算

w <− matpow(A,i) %∗% x0

x.n <− c(x.n,w[1])

}
#結果の図を描く
plot(x.n,type="l")

12.2 自己回帰モデルの安定性判別
図 89でみた先のモデルはゼロに収束していっていた。それでは、初期値は同じとして、行列 Aが次のよう
になっていた場合はどうだろうか？

A =

 −0.5 0.59 0.08
1 0 0
0 1 0


この場合を同様にシミュレーションすると図 90のようにずっと安定せずに暴走する。
この違いは何だろうか？　結論からいうと行列 Aのもっている固有値の違いである。その事を確認する前
に、行列 Aが対角行列の場合の簡単な例から確認しよう。
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図 90 暴走する場合のシミュレーション

■対角行列の場合 　行列 Aが対角行列の場合、安定するのは対角成分が１以下の場合である。実際に確認
していこう。
実は Aが対角行列なら、y = Axは簡単な連立方程式でしかない。この簡単な場合で「どんな時に安定しな
いか？」を考えてみよう。先ほどよりも簡単にするために２次元にし、さらに一般化して変数ベクトルを

X(t) =

(
x1(t)
x2(t)

)
として、以下のように表現されるモデルを考えよう。

X(t) =

(
−1.5 0
0 1.2

)
X(t− 1) 初期値 X(0) =

(
0.8
0.6

)
この式の解は式 12.1のように、X(t) = AtX(0)となる。また対角行列のべき乗は単なる成分のべき乗なので

X(t) =

(
−1.5 0
0 1.2

)t

X(0) =

(
−1.5t 0
0 1.2t

)(
x1(0)
x2(0)

)
これは何のこともない以下の連立方程式である。{

x1(t) = −1.5tx1(0)
x2(t) = 1.2tx2(0)

この方程式に t = 1, t = 2, · · · と時刻を変化させた時のの様子をみてみよう。図 91の左上の図が t = 5まで
の x1 と x2 の解の様子である。このように x1 はプラスとマイナスに振れるが、x1 と x2 の解ベクトルとして
はどんどんと大きくなる。なので x1 + x2 も図 91の右上の図のように発散する事になる。
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0 0.8

)
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2

x1
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図 91 対角行列の成分によって収束する場合と発散する場合

一方、行列 Aが以下のような場合を考えてみよう。

A =

(
−0.9 0
0 0.8

)
この場合は、図 91の左下の図のように、初期値からどんどんと解ベクトルが小さくなっていく。当然、x1+x2

も図 91の右下の図のようにゼロに収束していく事になる。
この違いをみても判るように、対角成分が１以上ならば、状態ベクトル X(t)の成分は増大し、１以下なら
ば減少する。なので当然、x1(t) + x2(t)のような状態ベクトルの線形結合も１以上ならば増大し、１以下なら
ば減少する。つまり、全ての対角成分が１以下ならば、そのモデルは安定する事になる。

■一般の正則行列の場合 　次に、一般の正則行列の場合を考える。前節で述べたように固有ベクトルからな
るモードマトリクスを持ってくれば、一般の正則行列を対角化できる。対角化できれば同じ理屈で安定性を判
別できる。その事を確認していこう。
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13 複素行列
ここでは、成分を複素数まで許した行列・ベクトルを扱う。それらを複素行列・複素ベクトルと呼ぶ。

実数 複素数　
内積　 エルミート内積（複素内積）
転置行列 随伴行列
対称行列 エルミート行列
直交行列 ユニタリ行列
２次形式 エルミート形式

13.1 複素数の復習
■複素平面 まず最初に、複素数を複素平面（極形式）で表してみる。複素平面については節 B.3を参照。
下図のように、複素数 z = a+ ibが表すベクトルが実軸となす角度を θ、その長さを rとすると、一般の複
素数を

z = r(cosθ + i sin θ)

と表すことが出来る。

Z = r icos sin

cos

sin

r

図 92 複素数を極形式で表す

これを、オイラーの公式 (付録 B.8)、つまり eiθ = cos θ + i sin θ に当てはめると

z = r(cos θ + i sin θ) = reiθ (13.1)

これを長さ r（r =
√
cos2 θ + sin2 θ）で割ると、eiθ = cos θ+ i sin θは、複素平面上の単位円の上にある点

を表している事が判る。

■ 共役複素数 ついで、共役複素数について復習しておく。
複素数 a+ bi (a, b は実数）に対して数 a− bi を数 a+ bi の共役複素数という。複素数 α = a+ bi に対
して共役複素数は ᾱ と表される。共役複素数は実数部は同じで虚数部は－ 1を掛けたものになる。また，複
素数 a− bi の共役複素数は a+ (−b)(−1)i = a+ bi となる。このことから a+ bi と a− bi を互いに共役な
複素数という．
共役な複素数は次のような特徴をもつ。
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• 共役な複素数の和は実数

(a+ bi) + (a− bi) = 2a

• 共役な複素数の積は実数

(a+ bi)(a− bi) = a2 + b2

つまり、共役複素数同士の和は、 虚部が相殺され、実軸上に 2a が残る。また積も同様に虚部が消えるが、
その長さは元の複素数の絶対値の２乗 a2 + b2 になる。

■ 複素数の四則演算
複素数 a+ bi, c+ di の四則演算について復習しておく。

和 (a+ bi) + (c+ di) = (a+ c) + (b+ d)i

差 (a+ bi)− (c+ di) = (a− c) + (b− d)i

積 (a+ bi)(c+ di) = ac+ adi+ bci+ bdi2 = (ac− bd) + (ad+ bc)i

商 a+ bi

c+ di
=

(a+ bi)(c− di)

(c+ di)(c− di)
=

(ac+ bd) + (bc− ad)i

c2 + d2

複素数の商についての補足をしておく。この計算は以下のように分母分子に分母の共役複素数 z̄2 = c − di

をかけて求めている。

a+ bi

c+ di
=

(a+ bi) (c− di)

(c+ di) (c− di)
=

(ac+ bd) + (bc− ad) i

c2 + d2

以下、これらの四則演算が複素平面上でどのような意味を持つかを考えてみる。

1. 和と差について

和や差については、右図のように複素
平面上の２つのベクトルの和と差とし
て、単純に実軸・虚軸に分けて並行移
動させれば良い。

虚軸

実軸
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2. 積について
今２つの複素数を z1 = r1e

iθ1 と z2 = r2e
iθ2 のように表す

とすると、その積は以下のようになる。

z1z2 = r1r2e
i(θ1+θ2)

つまり、右図の事例のように、

· 長さは、２つのベクトルの長さの積

|z1z2| = r1r2

· 角度は、２つのベクトルの加算

arg (z1z2) = θ1 + θ2

虚軸

実軸

3. 商について
同様に商については、以下のようになる。

z2
z1

=
r2
r1

ei(θ2−θ1)

つまり、右図の事例のように、

· 長さは、２つのベクトルの長さの割り算

|z1z2| =
z2
z1

· 角度は、２つのベクトルの引き算

arg (z1z2) = θ2 − θ1

虚軸

実軸
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13.2 複素内積（エルミート内積）
エルミート内積とは、複素数を成分とする複素ベクトルの内積のことで、以下のように定義される。

定義 13.1. 　エルミート内積

複素ベクトル u =


u1

u2

...

un

 と　 v =


v1

v2
...

vn

 に対し、以下をエルミート内積という。

〈u|v〉 = u⊤v =
(
u1 u2 · · · un

)


v1
v2
...
vn

 =

n∑
k=1

ukvk

左側が共役を取っているところが、実数を成分とする内積とは異なるところである。

■エルミート内積の表記方法
エルミート内積の書き方は下記のように色々とある。

〈u|v〉 = 〈u,v〉 = u†v = uTv =
∑
i

u∗
i vi.

ここではブラケット (bracket)表示 〈a|b〉を中心として用いる*44。ブラケット表示は右のケット |v〉が生のベ
クトルで、左のブラ 〈u| はケットの共役転置として定義されており、左から右へ内積の作用を及ぼすイメー
ジをもった表現方法である。また、a†bというように書く事もある。この a† はダガーと読み、a の「共役転
置」＝「エルミート転置」である。

■内積において共役複素数を使う理由
内積の計算に共役複素数を使う理由は、ベクトルの大きさを正定値（非負の実数）にするためである。内積
の役割は、長さ（ノルム）や角度（直交性）を定義することで、そのためには内積の値が必ず 0 以上の実数で
なければいけないからである。

例えば、次のベクトル

a =

(
1

2i

)

*44 ブラケット表示とは ⟨u|v⟩と表示する方法で、左の ⟨u| は「ブラ」、右の |v⟩は「ケット」と読む。これは 量子力学・物理で非常
によく使われる。ブラとケットで「左は共役、右は生」の区別が一目でわかり、方向性（bra → ket）が内積の定義と一致する。
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の大きさを普通の実数計算と同じやり方の内積で求めてみると

|a| =
√
a⊤a =

√(
1 2i

)( 1
2i

)
=

√
1 · 1 + 2i · 2i =

√
1− 4 = −

√
3i

となり、「大きさ」が虚数という意味がわからない状態が起こります。一方、共役複素数を使って定義すると、

|a| =
√
a⊤a =

√(
1 2i

)( 1
2i

)
=
√
1 · 1 + 2i · 2i =

√
1 · 1 + 2i · (−2i) =

√
1 + 4 =

√
5

となり、「大きさ」が正の実数となる。

■エルミート内積の性質について

定理 13.1. エルミート内積の性質
任意の a,a′,b ∈ V、複素数 c ∈ C に対して

1. 共役対称性　 〈b|a〉 = 〈a|b〉

2. 加法　
{

〈a+ a′|b〉 = 〈a|b〉+ 〈a′|b〉
〈a|b+ b′〉 = 〈a|b〉+ 〈a|b′〉

3. スカラー倍
{

〈ca|b〉 = c̄ 〈a|b〉 この cはブラの aにかかっているので共役複素数 c̄

〈a|cb〉 = c〈a|b〉　 この cはケットの bにかかっているので複素数 c

4. 正定値性　 〈a|a〉 ≥ 0 （等号成立は a = 0 とき）

実は、この４つを満たすものは、エルミート内積空間と呼ばれるものとなっている。
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13.3 複素共役行列・随伴行列
ここでは、実数の成分で構成される行列の転置行列にあたる随伴行列を中心に述べる。

■複素共役行列
まずは複素共役行列から説明する。

定義 13.2. 　複素共役行列
複素行列

A =


a11 a12 a1n
a21 a22 a2n
...

...
. . .

...
am1 am2 amn


に対して、以下のようにすべての成分に複素共役をとった行列を Ā と表して A の複素共役行列という。

Ā =


a11 a12 a1n
a21 a22 a2n
...

...
. . .

...
am1 am2 amn



例えば、以下の行列 X の複素共役行列は X̄ となる。

X =

(
1 + i 3 2 + 4i
7i 4− 5i 8

)
X̄ =

(
1− i 3 2− 4i
−7i 4 + 5i 8

)

定理 13.2. 複素共役行列の演算の性質
m,n, r ∈ N、k ∈ C とするとき、次が成り立つ。

1. A および B が共に (m,n) 型の複素行列であるとき、 A+B = Ā+ B̄ である。
2. A が (m,n) 型の複素行列とするとき、 kA = kA である。
3. A および B がそれぞれ (m,n) 型、 (n, r) 型の複素行列であるとき、 AB = ĀB̄ である。
4. A が (m,n) 型の複素行列であるとき、 Ā = A

■随伴行列

定義 13.3. 　随伴行列
A = (aij) を m × n 行列とする。 A の各成分で複素共役を取り，転置させた n × m 行列を随伴行列
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（adjoint matrix）または エルミート転置（共役転置；Hermitian transpose）という。

A∗ = Ā⊤

図 93のように、共役を取って転置するのと，転置して共役を取るのはどちらも同じである。

元の行列 転置行列

複素共役行列 随伴行列

転置

転置

共役複素数 共役複素数

図 93 随伴行列

定理 13.3. 随伴行列の演算の性質
A,B を m× n 行列とする。このとき，

(A∗)
∗
= A ．

(A+B)∗ = A∗ +B∗ ．
(kA)∗ = k̄A∗, k ∈ C.
A を m× n 行列，B を n× l 行列とすると，(AB)∗ = B∗A∗
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13.4 エルミート行列とユニタリ行列
エルミート行列は、対称行列の複素数バージョンで、ユニタリ行列は直交行列の複素数バージョンである。

■エルミート行列

定義 13.4. 　エルミート行列（対称行列の複素数版）
正方行列 Aについて以下の式が成り立つとき，A をエルミート行列（Hermitian matrix）という。ただし，
A∗ = Ā⊤ は随伴行列（複素共役）．を指す。

A∗ = A

例えば、以下のX はエルミート行列の例である。実際に共役複素数行列X にして、その転置 X̄⊤ を取ると
以下の図 94ように X∗ = X となっている。

元の行列 転置行列

複素共役行列 随伴行列

転置

転置

共役複素数 共役複素数

図 94 エルミート行列

当然ながら、右のようにエルミート行列の対角成分は、共役複素
数をとっても同じでないといけないので実数である。さらに転置
して共役複素数をとると同じになる必要があり、対角成分に対し
て、対称な位置にある成分は互いに共役な複素数でなければなら
ない。

また、エルミート行列は次のような性質があるために、固有値、固有ベクトルとの関連でよく登場する。

· エルミート行列は正則行列で、必ず逆行列が存在する。
· エルミート行列の成分は複素数だが、固有値は必ず実数になる。
· エルミート行列の相異なる固有値の固有ベクトルは直交する。
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■ユニタリ行列

定義 13.5. 　ユニタリ行列（直交行列の複素数版）
m ∈ N とし、 U を m 次正方行列（すなわち (m,m) 型の行列）とする。このとき、

U∗U = UU∗ = Im (13.2)

が成り立つならば、 U をユニタリ（ユニタリー、ユニタリ）行列という。

これはまさに、 U∗ が U の逆行列であるときを示しています。

例えば、以下のような行列がユニタリ行列である。

Y =

 0 i 0
1 0 0
0 0 −1


実際に Y ∗Y と Y Y ∗ を計算すると以下のように単位行列になっている。

Y ∗Y =

 0 1 0
−i 0 0
0 0 −1

 0 i 0
1 0 0
0 0 −1


=

 1× 1 0 0
0 (−i)× (−i) 0
0 0 (−1)× (−1)


=

 1 0 0
0 1 0
0 0 1

 = I3

Y Y ∗ =

 0 i 0
1 0 0
0 0 −1

 0 1 0
−i 0 0
0 0 −1


=

 i× (−i) 0 0
0 1× 1 0
0 0 (−1)× (−1)


=

 1 0 0
0 1 0
0 0 1

 = I3

このユニタリ行列は実数行列でいう直交行列の複素数行列バージョンになっている。その事を説明しよう。
まず n次のユニタリ行列 U を以下のように n個の列ベクトル u1,u2, · · · ,un に分割して考える。すると、U∗

は以下のようになる。

U =


| | |

u1 u2 · · · un

| | |

 U∗ = U
⊤
=


− u1 −
− u2 −

...
− un −


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これをユニタリ行列の定義式 (13.2)に代入すると

U∗U =


− u1 −
− u2 −

...
− un −




| | |

u1 u2 · · · un

| | |



=


u1u1 u1u2 · · · u1un

u2u1 u2u2 · · · u2un

...
...

. . .
...

unu1 unu2 · · · unun

 =


|u1|2 u1u2 · · · u1un

u2u1 |u2|2 · · · u2un

...
...

. . .
...

unu1 unu2 · · · |un|2


これが単位行列になるという事なので複素ベクトルの内積 〈ui|uj〉について以下が成立する。

〈ui|uj〉 = δij =

{
1 (i = j)

0 (i 6= j)

ここで複素ベクトルの内積は 〈a|b〉 = 〈a|b〉なので、以下のように uiuj = uiuj となる。

〈ui|uj〉 = uiuj

〈ui|uj〉 = uiuj = uiuj

つまり、ユニタリ行列 U の n 個の複素列ベクトル u1,u2, · · · ,un は、そのノルム（大きさ）‖ui‖ = 1 で、
i 6= j の時 ui と uj は 〈ui|uj〉 = 0となり、互いに直交している。
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13.5 エルミート行列の対角化
式 (9.4)で示したように、実数を成分とする対称行列 Aが直交行列 P によって P−1AP と対角化できたよ
うに、複素数を成分とする複素数行列においても、エルミート行列 Aは、ユニタリ行列 U を用いて U−1AU

と対角化できる事を示していこう。
n次のエルミート行列 Aが異なる n個の固有値 λ1, λ2, · · · , λnを持つものとし、それぞれの固有値に対応し
た、大きさを 1にそろえた固有ベクトルを u1,u2, · · · ,un とする。この時、固有方程式は以下のようになる。

Au1 = λ1u1 , Au2 = λ2u2 , · · · , Aun = λnun

これを行列で表すと

A


| | |

u1 u2 · · · un

| | |

 =


| | |

u1 u2 · · · un

| | |



λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn


ここで、内積 〈ui|uj〉について以下が成立し

〈ui|uj〉 = δij =

{
1 (i = j)

0 (i 6= j)

n個の列ベクトル u1,u2, · · · ,un を並べた以下の行列 U はユニタリ行列となる。

U =


| | |

u1 u2 · · · un

| | |


ここで

Λ =


λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn


とおけば、

AU = UΛ

両辺に左から U−1 をかければ（つまり U∗ をかければ*45）、以下のように対角化できる。

U−1AU = Λ

U∗AU = Λ

*45 式 (13.2) のようにユニタリ行列の定義は U∗U = UU∗ = Im が成立する正方行列であり、逆行列は随伴行列 U−1 = U∗ であ
る。
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https://www.youtube.com/watch?v=GwdQQ-Xn8P0&list=PLr7eFwEQAvPhTQx2BGZJAZ9ObBLJZJAGr&

index=39&ab_channel=AKITO%E3%81%AE%E5%8B%89%E5%BC%B7%E3%83%81%E3%83%A3%E3%83%B3%E3%83%

8D%E3%83%AB

https://www.momoyama-usagi.com/entry/math-linear-algebra-ap01

https://www.mathema.jp/wp-content/uploads/2023/08/3d5b5e41ef969c16b7ab736807440acf.

pdf

https://suushikiniumoreru.com/linear-algebra06/

https://for-spring.com/linearalgebra/matrix-4/
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14 関数の基底展開
数式や関数をベクトルとして表現する事で、整形代数の言葉で扱えるようにできる。例えば、2次以下の多
項式全体を次のような空間と考える。

P2 = {a0 + a1x+ a2x
2 | a0, a1, a2 ∈ R}

この空間は 3次元ベクトル空間と考えられる。そして、このベクトル空間の基底として {1, x, x2} をとる。そ
うすると、これらの係数を並らべてベクトルを作る事ができる。

f1(x) = 2 + 3x

f2(x) = −1 + x

f3(x) = 1 + 2x+ 4x2

|f1〉 =

2
3
0

 |f2〉 =

−1
1
0

 |f3〉 =

1
2
4


ベクトル空間の定義 2.1で述べたように、集合にスカラ倍と和の演算が定義され、それらの演算について空間
が閉じていれば、多項式についてもベクトル空間を作る事ができる。さらに、そのベクトル空間の写像が線形
性を満たせば、その操作を行列で表現できる。具体的にこの多項式の事例を見てみよう。このベクトル空間に
微分演算を D : P2 → P2 という写像を考える*46。

各基底の微分は以下のようになる。
D(1) = 0

D(x) = 1

D(x2) = 2x

元の基底ベクトル 微分後 微分後の表現 成分表示（列ベクトル）

1 0 0 · 1 + 0 · x+ 0 · x2

 0
0
0


x 1 1 · 1 + 0 · x+ 0 · x2

 1
0
0


x2 2x 0 · 1 + 2 · x+ 0 · x2

 0
2
0



これを {1, x, x2}に対する行列として並べると：

D =

0 1 0
0 0 2
0 0 0


*46 ただし、微分して 2次が 1次になるので、厳密には P2 → P1 だが、ここでは出力の 3番目の成分は常に 0とし、出力を 3次元
ベクトルとして扱う
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以下のように、この行列によって、微分演算が「行列を左からかける操作」になっている。0 1 0
0 0 2
0 0 0

a0
a1
a2

 =

 a1
2a2
0


これは：

d

dx
(a0 + a1x+ a2x

2) = a1 + 2a2x

という微分結果を、基底 {1, x, x2} で成分表示したものと一致する。
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付録 A 三角関数とフーリエ変換
ある周期関数を同じ周期をもつ定数関数、sin関数、cos関数の重ね合わせ（すなわち、それぞれに定数を
かけたものの一次結合）で表すことを、この周期関数のフーリエ級数展開という。また、そうして得られた級
数をフーリエ級数という。

A.1 フーリエ変換の原理
以下のような４つの矩形関数があったとしよう。

f1 =


1
1
1
1

 , f2 =


1
1
−1
−1

 , f3 =


1
−1
−1
1

 , f4 =


1
−1
1
−1



f1 f2 f 3 f4

図 95 ４つの矩形関数

この４つの矩形関数の一次結合として、任意のベクトル F を表わす事を考えてみる。任意のベクトル F を

F =


11
−1
−5
3


とした時、それを図 96のように、f1, f2, f3, f4 の１次結合で表すという事である。

a1f1

+

a2f2

+

a3f3

+

a4f4

F = a1f1 + a2f2 + a3f3 + a4f4

図 96 任意のベクトルを矩形関数の一次結合で表す

i



ところで、この式は以下のようにベクトル計算式として表す事ができる。
F = a1f1 + a2f2 + a3f3 + a4f4

= a1


1
1
1
1

+ a2


1
1
−1
−1

+ a3


1
−1
−1
1

+ a4


1
−1
1
−1

 (付録 A.1)

この式は、以下の連立方程式を解いているのと同じである。
a1 + a2 + a3 + a4 = 11

a1 + a2 − a3 − a4 = −1

a1 − a2 − a3 + a4 = −5

a1 − a2 + a3 − a4 = 3

A.2 三角関数の性質
A.2.1 三角関数と座標の関係
三角関数 cos θ、sin θは、図 97のように、ともに周期 T = 2π の周期関数となる。また、三角関数を座標で
表すと、図 97のように、点 P を P = (x, y)とし、半径を |OP | =

√
x2 + y2 = r とすると

sin θ =
y

r
cos θ =

x

r
tan θ =

y

x

と表すことができる。ここで θ はラジアンという単位で、反時計回りに、90度が π
2 ラジアン、180度が π ラ

ジアンとなる。

x

y

P

O

r

r

r

sincos

図 97 三角関数と座標
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A.2.2 三角関数の加法定理
三角関数の加法定理� �

sin(α± β) = sinα cosβ ± cosα sinβ (付録 A.2)

cos(α± β) = cosα cosβ ∓ sinα sinβ (付録 A.3)

cos(α+ β) = cosα cosβ − sinα sinβ であり ∓である。つまり、±とは符号が逆なので注意！� �
三角関数の加法定理は、回転を表す行列の積で確認すると簡単である。

O

¡y sin µ

y cos µ

P

0P

y

x

y 0

x 0

µ

µ

O x cos µ

x sin µ

(a) (b)

図 98 回転を表す行列の算出

まずは座標軸の回転を表す行列を調べる。図 98の (a)ように、点 P = (x, y)を θ だけ反時計回りに回転し
た点を P ′ = (x′, y′)とする。その時の x′ 及び y′ の座標は、図 98の (b)のように、x′ = (x cos θ, x sin θ)で
あり、y′ = (−y sin θ, y cos θ)である。
なので、点 P ′ は

P ′ = x′ + y′

=

(
x cos θ
x sin θ

)
+

(
−y sin θ
y cos θ

)
=

(
x cos θ − y sin θ
x sin θ + y cos θ

)
=

(
cos θ − sin θ
sin θ cos θ

)(
x
y

)

つまり、角 θ だけ座標軸を反時計回りに回転させる変換を意味する行列は以下のようになる。(
cos θ − sin θ
sin θ cos θ

)
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さて、この回転行列を用いて、三角関数の加法定理を確認しよう。角 αの回転を表す行列を A、角 β の回
転を表す行列を B とすると、

A =

(
cosα − sinα
sinα cosα

)
B =

(
cosβ − sinβ
sinβ cosβ

)
なので、

AB =

(
cosα − sinα
sinα cosα

)(
cosβ − sinβ
sinβ cosβ

)
=

(
cosα cosβ − sinα sinβ − cosα sinβ − sinα cosβ
sinα cosβ + cosα sinβ − sinα sinβ + cosα cosβ

)
これが角 (α+ β)と同じ、つまり以下と同等(

cos(α+ β) − sin(α+ β)
sin(α+ β) cos(α+ β)

)
したがって、

sin(α+ β) = sinα cosβ + cosα sinβ

cos(α+ β) = cosα cosβ − sinα sinβ

A.2.3 積を和に変える公式
積を和に変える公式� �

sinα cosβ =
1

2
{sin(α+ β) + sin(α− β)} (付録 A.4)

cosα sinβ =
1

2
{sin(α+ β)− sin(α− β)} (付録 A.5)

cosα cosβ =
1

2
{cos(α+ β) + cos(α− β)} (付録 A.6)

sinα sinβ =
1

2
{cos(α+ β)− cos(α− β)} (付録 A.7)� �

「積を和に変える公式」は、先の加法定理の式 (付録 A.2)と (付録 A.3)の加減をすれば導くことができる。

A.2.4 三角関数の微分と積分について
三角関数と指数関数の微分と積分� �
フーリエ展開に用いる積分公式としては以下のものが重要である。∫

cos atdt =
1

a
sin at+ C (付録 A.8)∫

sin atdt = −1

a
cos at+ C (付録 A.9)∫

eatdt =
1

a
eat + C (付録 A.10)� �
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これは、表 1の三角関数と指数関数の微分と積分の公式から明らかである。

表 1 三角関数と指数関数の微分と積分

微分 積分

(sinx)′ = cosx
∫
sinxdx = − cosx+ C

(cosx)′ = − sinx
∫
cosxdx = sinx+ C

(ex)′ = ex
∫
etdx = ex + C

例えば、sin ax の微分は a · cos ax となり*47、積分は微分の逆演算なので、∫ cos atdt =
1

a
sin at + C と

なる。

A.2.5 sinと cosの積分
三角関数の積分� �
k をゼロでない正及び負の整数とすると、−π から π までの三角関数の積分は∫ π

−π

sin kx dx = 0 (付録 A.11)

∫ π

−π

cos kx dx = 0 (付録 A.12)� �
積分は与えられた範囲の面積を表している。なので、図 99を見れば明らかなように、−π から π までの sin

及び cosの波形は正の部分と負の部分が均等になっており、その合計した面積はゼロである。
いっぽう、k = 0の場合は、sin 0 = 0なので、式付録A.11はそのまま成立するが、式付録A.12は、cos 0 = 1

なので定数となりゼロではなく ∫ π

−π

1dx = 2π

となる。

*47 何故ならば、t = axとおくと、合成関数の微分 df
dx

= df
dg

· dg
dx
より、(sin ax)′ = d

dt
sin t · d

dx
ax = cos t · a = a · cos ax

v



xsin

xsin

sin x

xcos x

xcos x

cos xx

図 99 三角関数の積分

A.3 三角関数と直交関数系
三角関数と直交� �
n、mを正の整数とすると以下が成立する。ここで δ はクロネッカーのデルタと呼ばれるもので、m = n

なら 1、m 6= nなら 0の値をとる。 ∫ π

−π

cosnt cosmt dt = πδ∫ π

−π

cosnt sinmt dt = 0∫ π

−π

sinnt sinmt dt = πδ

(付録 A.13)

つまり、区間 [−π, π] 上の連続関数 {cos t, cos 2t, · · · , cosnt, sin t, sin 2t, · · · , sinmt} は、お互いに直交
する。� �

■∫ cosnt cosmt dt = πδ の証明 　式付録 A.6より

cosnt cosmt =
1

2
{cos(n+m)t+ cos(n−m)t}

なので、上式の両辺の積分をとって、∫ π

−π

cosnt cosmt dt = 　1

2

∫ π

−π

{cos(n+m)t} dt+
1

2

∫ π

−π

{cos(n−m)t} dt (付録 A.14)
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ここで、式付録 A.12及び式付録 A.11より、k がゼロでない整数ならば、∫ π

−π

cos kx dx =

∫ π

−π

sin kx dx = 0

k = 0ならば、 ∫ π

−π

sin kx dx = 0,

∫ π

−π

cos kx dx = 2π

なので、m = nの場合とm 6= nの場合に分けて考えてみよう。

m = nのとき 　 n+mはゼロでない整数、n−m = 0なので
1

2

∫ π

−π

{cos(n+m)t} dt = 0

1

2

∫ π

−π

{cos(n−m)t} dt = π

これを式付録 A.15にあてはめると ∫ π

−π

cosnt cosmt dt = 　π

m 6= nのとき 　この場良いは n+mも n−mもゼロでない整数なので、
1

2

∫ π

−π

{cos(n+m)t} dt = 0

1

2

∫ π

−π

{cos(n−m)t} dt = 0

これを式付録 A.15にあてはめると ∫ π

−π

cosnt cosmt dt = 　 0

となって、 ∫ π

−π

cosnt cosmt dt = πδ

が証明できた。∫ sinnt sinmt dt = πδ も同様に証明できる。

■∫ cosnt sinmt dt = πδ の証明 　式付録 A.5より

cosα sinβ =
1

2
{sin(α+ β)− sin(α− β)}

なので、上式の両辺の積分をとって、∫ π

−π

cosnt sinmt dt = 　1

2

∫ π

−π

{sin(n+m)t} dt− 1

2

∫ π

−π

{sin(n−m)t} dt (付録 A.15)

こんどは、式付録 A.11より、k が（ゼロであっても）整数ならば、∫ π

−π

sin kx dx = 0

となるので、式付録 A.15は ∫ π

−π

cosnt sinmt dt = 0
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付録 B 複素数と回転操作
単位円上にある複素数をかける事は回転操作と同じ働きをする。これは色々な場面で登場するので参考に示
してみよう。まずは複素数を行列で表現し、その行列表現をつかってオイラーの公式を示す。それによって、
回転操作を意味する行列が複素数の行列表現と同じである事を示す。

B.1 複素数の行列表現

補題 付録 B.1. 複素数全体がなす集合も、ベクトル空間をなす。つまり積と和の演算が定義でき、複素数
全体の集合 Z の中の任意の元 x、 yに関して x+ y ∈ Z、cx ∈ Z が成り立つ。

これは、複素数の定義から明らかなのだが一応説明する。まず、２つの複素数を

x = a+ bi, y = b+ ci

としたとき、その和は複素数の演算の定義から

x+ y = (a+ b) + (b+ d)i ∈ Z

そのスカラー積は、k を任意の実数として

kx = ka+ kbi ∈ Z

このように複素数全体は、和と積に関して閉じており、ベクトル空間として扱える。なので、当然行列表現で
きるはずである。

■行列表現の虚数単位を導入する ここで単位行列を E、虚数単位を以下のような行列 J で表す。

E =

(
1 0
0 1

)
, J =

(
0 −1
1 0

)
(付録 B.1)

この虚数単位 J の累乗を調べると

J2 =

(
0 −1
1 0

)(
0 −1
1 0

)
=

(
−1 0
0 −1

)
= E

J3 = J(J2) =

(
0 −1
1 0

)(
−1 0
0 −1

)
=

(
0 1
−1 0

)
= −J

J4 = J(J3) =

(
0 −1
1 0

)(
0 1
−1 0

)
=

(
1 0
0 1

)
= E

となり、虚数単位 iと同等な働きをする事が判る。

■行列表現の虚数表現が虚数集合と同型である事を示す 　集合が和・差・積・商に関して閉じている事、同
じ振る舞いをする事を示す。まずは、次の集合を考えてみる。

M =

{(
p −q
q p

)
= pE + qJ | p, q は実数

}
(付録 B.2)
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この集合M の和及び積の演算をしてみる。

和
(

p −q
q p

)
+

(
r −s
s r

)
=

(
p+ r −(q + s)
q + s p+ r

)
= (p+ r)E + (q + s)J

差
(

p −q
q p

)
−
(

r −s
s r

)
=

(
p− r −(q − s)
q − s p− r

)
= (p− r)E + (q − s)J

積
(

p −q
q p

)(
r −s
s r

)
=

(
pr − qs −(ps+ qr)
ps+ qr pr − qs

)
= (pr − qs)E + (ps+ qr)J

逆行列
(

p −q
q p

)−1

=
1

p2 + q2

(
p q
−q p

)
=

1

p2 + q2

(
p −(−q)
−q p

)
=

1

p2 + q2
(pE − qJ)

このようにM の元に関する和、差、積、逆行列がやはり集合M の元であり、M は行列の四則演算に関し
て閉じているといえる。今度は、複素数の集合 C を考えてみる。

C = { p+ qi | p, q は実数、iは虚数単位 } (付録 B.3)

この集合M の和及び積の演算をしてみる。

和 (p+ qi) + (r + si) = (p+ r) + (q + s)i

差 (p+ qi)− (r + si) = (p− r) + (q − s)i

積 (p+ qi)(r + si) = (pr − qs) + (ps− qr)i

逆数 1

p+ qi
=

p− qi

(p+ qi)(p− qi)
=

1

p2 + q2
(p− qi)

この場合も C は四則演算に関して閉じている。また集合M での演算と、複素数集合 C での演算を比べると
次のような事がわかる。

集合M の元
(

p −q

q p

)
= pE + qJ と対応する複素数集合 C の元 p+ qiは、加法・減法・乗法・逆数を

とる演算に対して、まったく同じ振る舞いをしており、下図のような対応関係がある。

(

p q

q p

(

= pE + qJ p + qi

M C

-
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B.2 オイラーの公式の行列表現
先のような複素数の行列表現を利用して、オイラーの公式を行列で表現してみる。まずは、一般的な方法で
オイラーの公式そのものを導出してみよう。

B.2.1 オイラーの公式の導出
まずは準備として関数 f(x)の級数展開を確認しよう。いま、xの関数 f(x)が以下のような形の無限級数で
表されると仮定しよう。一旦、無前提に仮定するのである。

f(x) = a0 + a1x+ a2x
2 + a3x

3 + · · ·+ anx
n + · · ·

いま、この両辺を繰り返し微分すると

f ′(x) = a1 + 2a2x+ 3a3x
2 + · · ·+ nanx

n−1 + · · ·
f ′′(x) = 2a2 + 3 · 2a3x+ · · ·+ n(n− 1)anx

n−2 + · · ·
f ′′′(x) = 3 · 2a3 + · · ·+ n(n− 1)(n− 2)anx

n−3 + · · ·

これらの式で x = 0とおくと定数項だけが残るので

f(0) = a0 f ′(0) = a1 f ′′(0) = 2!a2 f ′′′(0) = 3!a3 · · · f (n)(0) = n!an

したがって、元の関数 f(x)は、以下のように表す事が出来る。

公式 付録 B.1. 　関数 f(x)の級数展開

f(x) = f(0) + f ′(0)x+
f ′′(0)

2!
x2 +

f ′′′(0)

3!
x3 + · · ·+ f (n)(0)

n!
xn + · · · (付録 B.4)

では、指数関数の級数展開を調べよう。f(x) = ex とすると、ex は微分しても ex のままなので、f (n) = ex

であり、上記の式 (付録 B.4) より指数関数の級数展開は式 (付録 B.5) のように表す事ができる。ちなみに、
三角関数の級数展開は式 (付録 B.6)及び式 (付録 B.7)と表す事が出来る*48。

公式 付録 B.2. 　指数関数・三角関数の級数展開

ex = 1 +
1

1!
x+

1

2!
x2 +

1

3!
x3 + · · ·+ f (n)(0)

n!
xn + · · · (付録 B.5)

sinx = x− x3

3!
+

x5

5!
− x7

7!
+ · · · (付録 B.6)

cosx = 1− x2

2!
+

x4

4!
− x6

6!
+ · · · (付録 B.7)

*48 f(x) = sinx とおくと f (1)(x) = cosx, f (2)(x) = − sinx, f (3)(x) = − cosx, f (4)(x) = sinx であり、x = 0 の時
のこれらの値は f (1)(0) = 1, f (2)(0) = 0, f (3)(0) = −1, f (4)(0) = 0 となる。この値を f(x) = f(0) + f ′(0)x +
f ′′(0)

2!
x2 +

f ′′′(0)
3!

x3 + · · ·+ f(n)(0)
n!

xn + · · · に代入すると、sinx = x−
1

3!
x3 +

1

5!
x5 −

1

7!
x7 + · · · が得られる。
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この３つの公式を使ってオイラーの公式を導く。先の式 (付録 B.5)において、x = iθ とおくと

eiθ = 1 +
1

1!
iθ +

1

2!
iθ2 +

1

3!
iθ3 +

1

4!
iθ4 +

1

5!
iθ5 +

1

6!
iθ6 +

1

7!
iθ7 + · · ·

= 1 +
1

1!
iθ − 1

2!
θ2 − 1

3!
iθ3 +

1

4!
θ4 +

1

5!
iθ5 − 1

6!
θ6 − 1

7!
iθ7 + · · ·

=

(
1− 1

2!
θ2 +

1

4!
θ4 − 1

6!
θ6 − · · ·

)
+ i

(
1

1!
θ − 1

3!
θ3 +

1

5!
θ5 − 1

7!
θ7 + · · ·

)
ここで上記の式 (付録 B.6)と式 (付録 B.7)を使うと以下のオイラーの公式が導出できる。

公式 付録 B.3. 　オイラーの公式
eiθ = cos θ + i sin θ (付録 B.8)

B.2.2 オイラーの公式の行列表現
つぎに、オイラーの公式を行列表現してみよう。まずは行列の指数関数を以下のように表現する。

eJθ = exp

[
θ

(
0 −1
1 0

)]
(付録 B.9)

指数関数の級数展開に上記の行列を代入してみる。式の変形には、J2 = −E, J3 = −J, J4 = E を利
用する。

eJθ = 1 +
1

1!
Jθ +

1

2!
(Jθ)

2
+

1

3!
(Jθ)

3
+

1

4!
(Jθ)

4
+

1

5!
(Jθ)

5
+

1

6!
(Jθ)

6
+

1

7!
(Jθ)

7
+ · · ·

= 1 +
1

1!
Jθ − 1

2!
Eθ2 − 1

3!
Jθ3 +

1

4!
Eθ4 +

1

5!
Jθ5 − 1

6!
Eθ6 − 1

7!
Jθ7 + · · ·

= E

(
1− 1

2!
θ2 +

1

4!
θ4 − 1

6!
θ6 − · · ·

)
+ J

(
1

1!
θ − 1

3!
θ3 +

1

5!
θ5 − 1

7!
θ7 + · · ·

)
= E cos θ + J sin θ

つまり、オイラーの公式 (付録 B.8)の行列表現は以下のようになる。

公式 付録 B.4. 　オイラーの公式の行列表現

eJθ = E cos θ + J sin θ (付録 B.10)

ここで E は単位行列、J は虚数を表す行列で、

E =

(
1 0
0 1

)
, J =

(
0 −1
1 0

)
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B.3 複素平面上の複素数
複素数は回転や振動のイメージと深く関連している。まずは、複素平面上の複素数を考えてみよう。複素平
面（ガウス平面）とは横軸を実数軸、縦軸を虚数軸にとって複素数を平面上の点として描いたものである。

■虚数単位 iをかける操作は反時計回りの回転のイメージである 図 100の (a)のように複素平面上にある複
素数 Z = a + ibを考える。そうすると、その共役複素数は実軸に対して対象なベクトルになる。つまり共役
複素数とは実軸に射影した値が同じ、つまり実数の視点でみれば、Z と同じ値をもつ複素数であり、ベクトル
Z が回転するにしたがって影のように動く、同じ実数値をもつ複素数が共役複素数のイメージである。

iZ = a b

iZ = a b

iZ = a b

iZ = a b

a

b

a

b

iZ = a b

iZ = a bi

図 100 複素平面での表示

また、図 100の (b)のように、虚数単位 iをかけると 90◦ 回転したものになる。当然、Z に i2 = −1をかけ
たものは 180◦ 回転したものである。つまり、ある複素数に、虚数単位 iをかける操作は、反時計回りの 90◦

の回転操作をしているイメージである。

■複素数はもっと簡単に指数関数 eiθ で表す事が出来る 複素数を極形式で表し、オイラーの公式を用いる
と、指数関数 eiθ が複素数の表現であることが判る。図 101のように、複素数 Z = a + ibが表すベクトルが
実軸となす角度を θ、その長さを r とすると、一般の複素数を

z = r(cosθ + i sin θ)

と表すことが出来る。

Z = r icos sin

cos

sin

r

図 101 複素数を極形式で表す
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これを、先のオイラーの公式 (付録 B.8)に当てはめると

z = r(cos θ + i sin θ)

= reiθ

となり、これを長さ r（r =
√
cos2 θ + sin2 θ）で割ると、eiθ = cos θ+ i sin θは、複素平面上の単位円の上に

ある点を表している。

■オイラーの公式の行列表現はまさに回転行列そのものである 次に、オイラーの公式の行列表現である式
(付録 B.10)eJθ = E cos θ+ J sin θを見てみよう。オイラーの公式の行列表現を、E、J を用いて展開すると、

eJθ =

(
1 0
0 1

)
cos θ +

(
0 −1
1 0

)
sin θ

=

(
cos θ − sin θ
sin θ cos

)

角 θ だけ座標軸を反時計回りに回転させる変換を意味する行列は
(

cos θ − sin θ

sin θ cos θ

)
であり、複素数の表

現と同じである。まさに、複素数の行列表現 eJθ = E cos θ + J sin θ は回転操作を意味している。しかも、複
素平面という限定をなくして、XY平面上での操作として一般化できる。
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